Library Float.ClosestPlus
Require Export FroundPlus.
Require Export ClosestProp.
Section ClosestP.
Variable b : Fbound.
Variable radix : Z.
Variable precision : nat.
Let FtoRradix := FtoR radix.
Local Coercion FtoRradix : float >-> R.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ radixMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix precision.
Theorem errorBoundedPlusLe :
∀ p q pq : float,
Fbounded b p →
Fbounded b q →
(Fexp p ≤ Fexp q)%Z →
Closest b radix (p + q) pq →
∃ error : float,
error = Rabs (p + q - pq) :>R ∧
Fbounded b error ∧ Fexp error = Zmin (Fexp p) (Fexp q).
intros p q pq H' H'0 H'1 H'2.
cut (ex (fun m : Z ⇒ pq = Float m (Fexp (Fplus radix p q)) :>R)).
2: unfold FtoRradix in |- *;
apply
RoundedModeRep
with (b := b) (precision := precision) (P := Closest b radix);
auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
2: rewrite (Fplus_correct radix); auto with arith.
intros H'3; elim H'3; intros m E; clear H'3.
∃
(Fabs (Fminus radix q (Fminus radix (Float m (Fexp (Fplus radix p q))) p))).
cut (∀ A B : Prop, A → (A → B) → A ∧ B);
[ intros tmp; apply tmp; clear tmp | auto ].
unfold FtoRradix in |- *; rewrite Fabs_correct; auto with arith.
cut (∀ p q : R, p = q → Rabs p = Rabs q);
[ intros tmp; apply tmp; clear tmp | intros p' q' H; rewrite H; auto ].
unfold FtoRradix in |- *; repeat rewrite Fminus_correct; auto with arith.
unfold FtoRradix in E; rewrite E; auto.
ring.
intros H'4.
cut (Rabs (pq - (p + q)) ≤ Rabs (q - (p + q)))%R.
2: elim H'2; auto.
replace (q - (p + q))%R with (- FtoRradix p)%R.
2: ring.
rewrite Rabs_Ropp.
unfold FtoRradix in |- *; rewrite <- Fabs_correct; auto with arith.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr.
unfold FtoRradix in H'4; rewrite <- H'4.
simpl in |- ×.
rewrite Zmin_le1; auto.
generalize H'1 H'; case p; case q; unfold Fabs, Fminus, Fopp, Fplus in |- *;
simpl in |- *; clear H'1 H'.
intros Fnum1 Fexp1 Fnum2 Fexp2 H'5 H'6.
repeat rewrite Zmin_n_n; auto.
repeat rewrite (Zmin_le2 _ _ H'5); auto with zarith.
replace (Zabs_nat (Fexp2 - Fexp2)) with 0.
rewrite Zpower_nat_O.
cut (∀ z : Z, (z × 1%nat)%Z = z);
[ intros tmp; repeat rewrite tmp; clear tmp | auto with zarith ].
unfold FtoRradix, FtoR in |- *; simpl in |- ×.
intros H'.
repeat split; simpl in |- ×.
rewrite (fun x ⇒ Zabs_eq (Zabs x)); auto with zarith.
apply Zle_lt_trans with (Zabs Fnum2); auto.
apply le_IZR.
apply (Rle_monotony_contra_exp radix) with (z := Fexp2); auto.
case H'6; auto.
case H'6; auto.
intros; simpl in |- *; ring.
replace (Fexp2 - Fexp2)%Z with 0%Z; simpl in |- *; auto with zarith.
Qed.
Theorem errorBoundedPlusAbs :
∀ p q pq : float,
Fbounded b p →
Fbounded b q →
Closest b radix (p + q) pq →
∃ error : float,
error = Rabs (p + q - pq) :>R ∧
Fbounded b error ∧ Fexp error = Zmin (Fexp p) (Fexp q).
intros p q pq H' H'0 H'1.
case (Zle_or_lt (Fexp p) (Fexp q)); intros H'2.
apply errorBoundedPlusLe; auto.
replace (p + q)%R with (q + p)%R; [ idtac | ring ].
replace (Zmin (Fexp p) (Fexp q)) with (Zmin (Fexp q) (Fexp p));
[ idtac | apply Zmin_sym ].
apply errorBoundedPlusLe; auto.
auto with zarith.
apply (ClosestCompatible b radix (p + q)%R (q + p)%R pq); auto.
ring.
case H'1; auto.
Qed.
Theorem errorBoundedPlus :
∀ p q pq : float,
(Fbounded b p) →
(Fbounded b q) →
(Closest b radix (p + q) pq) →
∃ error : float,
error = (p + q - pq)%R :>R ∧
(Fbounded b error) ∧ (Fexp error) = (Zmin (Fexp p) (Fexp q)).
intros p q pq H' H'0 H'1.
case (errorBoundedPlusAbs p q pq); auto.
intros x H'2; elim H'2; intros H'3 H'4; elim H'4; intros H'5 H'6;
clear H'4 H'2.
generalize H'3; clear H'3.
unfold Rabs in |- *; case (Rcase_abs (p + q - pq)).
intros H'2 H'3; ∃ (Fopp x); split; auto.
unfold FtoRradix in |- *; rewrite Fopp_correct; auto.
unfold FtoRradix in H'3; rewrite H'3; ring.
split.
apply oppBounded; auto.
rewrite <- H'6; auto.
intros H'2 H'3; ∃ x; split; auto.
Qed.
Theorem plusExact1 :
∀ p q r : float,
Fbounded b p →
Fbounded b q →
Closest b radix (p + q) r →
(Fexp r ≤ Zmin (Fexp p) (Fexp q))%Z → r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2.
cut
(2%nat × Rabs (FtoR radix (Fplus radix p q) - FtoR radix r) ≤
Float 1%nat (Fexp r))%R;
[ rewrite Fplus_correct; auto with zarith; intros Rl1 | idtac ].
case errorBoundedPlus with (p := p) (q := q) (pq := r); auto.
intros x H'3; elim H'3; intros H'4 H'5; elim H'5; intros H'6 H'7;
clear H'5 H'3.
unfold FtoRradix in H'4; rewrite <- H'4 in Rl1.
2: apply Rle_trans with (Fulp b radix precision r); auto.
2: apply (ClosestUlp b radix precision); auto.
2: rewrite Fplus_correct; auto with zarith.
2: unfold FtoRradix in |- *; apply FulpLe; auto.
2: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
cut (x = 0%R :>R); [ unfold FtoRradix in |- *; intros Eq1 | idtac ].
replace (FtoR radix r) with (FtoR radix r + 0)%R; [ idtac | ring ].
rewrite <- Eq1.
rewrite H'4; ring.
apply (is_Fzero_rep1 radix).
case (Z_zerop (Fnum x)); simpl in |- *; auto.
intros H'3; Contradict Rl1.
apply Rgt_not_le.
red in |- *; apply Rle_lt_trans with (Rabs (FtoR radix x)).
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
rewrite Rabs_mult.
apply Rmult_le_compat; auto with real arith.
generalize H'3; case (Fnum x); simpl in |- *; auto with real zarith.
intros H'5; case H'5; auto.
intros p0 H'5; rewrite Rabs_right; auto with real.
replace 1%R with (INR 1); unfold IZR; repeat rewrite <- INR_IPR; auto with real arith.
intros p0 H'5; rewrite Faux.Rabsolu_left1; auto.
unfold IZR; rewrite Ropp_involutive.
repeat rewrite <- INR_IPR; simpl; replace 1%R with (INR 1); auto with real arith.
unfold IZR; repeat rewrite <- INR_IPR; replace 0%R with (- 0%nat)%R; auto with real.
rewrite Rabs_right; auto with real arith.
apply Rle_powerRZ; auto with real arith.
auto with zarith.
apply Rle_ge; cut (1 < radix)%Z; auto with float real zarith.
cut (∀ r : R, (2%nat × r)%R = (r + r)%R);
[ intros tmp; rewrite tmp; clear tmp | intros f; simpl in |- *; ring ].
pattern (Rabs (FtoR radix x)) at 1 in |- *;
replace (Rabs (FtoR radix x)) with (Rabs (FtoR radix x) + 0)%R;
[ idtac | ring ].
apply Rplus_lt_compat_l; auto.
case (Rabs_pos (FtoR radix x)); auto.
rewrite <- Fabs_correct; auto with arith.
intros H'5; Contradict H'3.
cut (Fnum (Fabs x) = 0%Z).
unfold Fabs in |- *; simpl in |- *; case (Fnum x); simpl in |- *; auto;
intros; discriminate.
change (is_Fzero (Fabs x)) in |- ×.
apply (is_Fzero_rep2 radix); auto with arith.
Qed.
Theorem plusExact1bis :
∀ p q r : float,
Fbounded b p →
Fbounded b q →
Closest b radix (p + q) r →
r ≠ (p + q)%R :>R → (Zmin (Fexp p) (Fexp q) < Fexp r)%Z.
intros p0 q0 r0 H' H'0 H'1 H'2;
case (Zle_or_lt (Fexp r0) (Zmin (Fexp p0) (Fexp q0)));
auto.
intros H'3; Contradict H'2.
apply plusExact1; auto.
Qed.
Theorem plusExact2Aux :
∀ p q r : float,
(0 ≤ p)%R →
Fcanonic radix b p →
Fbounded b q →
Closest b radix (p + q) r →
(Fexp r < Zpred (Fexp p))%Z → r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2 H'3.
apply plusExact1; auto.
apply FcanonicBound with (1 := H'0); auto.
case (Zle_or_lt (Fexp p) (Fexp q)); intros Zl1.
rewrite Zmin_le1; auto with zarith.
apply Zle_trans with (Zpred (Fexp p)); auto with zarith.
unfold Zpred in |- *; auto with zarith.
rewrite Zmin_le2; auto with zarith.
case (Zlt_next _ _ Zl1); intros Zl2.
rewrite Zl2 in H'3.
replace (Fexp q) with (Zpred (Zsucc (Fexp q))); auto with zarith;
unfold Zpred, Zsucc in |- *; ring.
case H'0; clear H'0; intros H'0.
absurd (r < Float (nNormMin radix precision) (Zpred (Fexp p)))%R.
apply Rle_not_lt; auto.
unfold FtoRradix in |- *;
apply
(ClosestMonotone b radix
(Float (nNormMin radix precision) (Zpred (Fexp p))) (
p + q)%R); auto; auto.
cut (Float (nNormMin radix precision) (Fexp p) ≤ p)%R;
[ intros Eq1 | idtac ].
case (Rle_or_lt 0 q); intros Rl1.
apply Rlt_le_trans with (FtoRradix p).
apply
Rlt_le_trans with (FtoRradix (Float (nNormMin radix precision) (Fexp p)));
auto.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
apply Rmult_lt_compat_l; auto with real arith.
replace 0%R with (IZR 0%nat); auto with real; auto with real float arith.
apply Rlt_IZR; apply nNormPos; auto with zarith.
unfold Zpred in |- *; auto with real float zarith arith.
pattern (FtoRradix p) at 1 in |- *; replace (FtoRradix p) with (p + 0)%R;
auto with real.
apply Rplus_lt_reg_l with (r := (- q)%R); auto.
replace (- q + (p + q))%R with (FtoRradix p); [ idtac | ring ].
apply
Rlt_le_trans with (FtoRradix (Float (nNormMin radix precision) (Fexp p)));
auto.
apply
Rlt_le_trans
with (2%nat × Float (nNormMin radix precision) (Zpred (Fexp p)))%R;
auto.
cut (∀ r : R, (2%nat × r)%R = (r + r)%R);
[ intros tmp; rewrite tmp; clear tmp | intros; simpl in |- *; ring ].
rewrite (Rplus_comm (- q)).
apply Rplus_lt_compat_l.
rewrite <- Faux.Rabsolu_left1; auto.
rewrite <- (Fabs_correct radix); auto with arith.
unfold FtoRradix in |- *; apply maxMaxBis with (b := b); auto with zarith.
apply Rlt_le; auto.
apply
Rle_trans with (radix × Float (nNormMin radix precision) (Zpred (Fexp p)))%R.
apply Rmult_le_compat_r; auto.
apply (LeFnumZERO radix); simpl in |- *; auto with arith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
rewrite INR_IZR_INZ; apply Rle_IZR; simpl in |- *; cut (1 < radix)%Z;
auto with real zarith.
pattern (Fexp p) at 2 in |- *; replace (Fexp p) with (Zsucc (Zpred (Fexp p)));
[ idtac | unfold Zsucc, Zpred in |- *; ring ].
unfold FtoRradix, FtoR in |- *; simpl in |- ×.
rewrite powerRZ_Zs; auto with real zarith.
repeat rewrite <- Rmult_assoc.
rewrite (Rmult_comm radix); auto with real.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
apply Rmult_le_compat_r; auto with real zarith.
apply Rle_IZR.
rewrite <- (Zabs_eq (Fnum p)); auto with zarith.
apply pNormal_absolu_min with (b := b); auto with arith.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
apply (LeR0Fnum radix); auto with arith.
apply (RoundedModeProjectorIdem b radix (Closest b radix)); auto.
apply ClosestRoundedModeP with (precision := precision); auto.
repeat split; simpl in |- ×.
rewrite Zabs_eq; auto with zarith.
apply ZltNormMinVnum; auto with arith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
apply Zle_trans with (Fexp q); auto with float zarith.
case (Rle_or_lt 0 r); intros Rl1.
rewrite <- (Rabs_right r); auto with real.
rewrite <- (Fabs_correct radix); auto with arith.
unfold FtoRradix in |- *; apply maxMaxBis with (b := b); auto with zarith.
apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
apply ClosestRoundedModeP with (precision := precision); auto with real.
apply Rlt_le_trans with 0%R; auto.
apply (LeFnumZERO radix); simpl in |- *; auto with arith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
absurd (- dExp b ≤ Fexp q)%Z; auto with float.
apply Zlt_not_le.
case H'0; intros Z1 (Z2, Z3); rewrite <- Z2; auto with zarith.
Qed.
Theorem plusExact2 :
∀ p q r : float,
Fcanonic radix b p →
Fbounded b q →
Closest b radix (p + q) r →
(Fexp r < Zpred (Fexp p))%Z → r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2.
case (Rle_or_lt 0 p); intros Rl1.
apply plusExact2Aux; auto.
replace (p + q)%R with (- (Fopp p + Fopp q))%R.
rewrite <- (plusExact2Aux (Fopp p) (Fopp q) (Fopp r)); auto.
unfold FtoRradix in |- *; rewrite Fopp_correct; ring.
unfold FtoRradix in |- *; rewrite Fopp_correct.
apply Rlt_le; replace 0%R with (-0)%R; auto with real.
apply FcanonicFopp; auto with arith.
apply oppBounded; auto.
replace (Fopp p + Fopp q)%R with (- (p + q))%R.
apply ClosestOpp; auto.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; ring.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; ring.
Qed.
Theorem plusExactR0 :
∀ p q r : float,
Fbounded b p →
Fbounded b q →
Closest b radix (p + q) r → r = 0%R :>R → r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2.
cut (r = FtoRradix (Fzero (- dExp b)) :>R);
[ intros Eq1; rewrite Eq1
| rewrite H'2; apply sym_eq; unfold FtoRradix in |- *; apply FzeroisZero ].
apply plusExact1; auto.
apply (ClosestCompatible b radix (p + q)%R (p + q)%R r); auto.
apply FboundedFzero; auto.
simpl in |- *; auto.
unfold Zmin in |- *; case (Fexp p ?= Fexp q)%Z; auto with float.
Qed.
Theorem plusErrorBound1 :
∀ p q r : float,
Fbounded b p →
Fbounded b q →
Closest b radix (p + q) r →
¬ is_Fzero r →
(Rabs (r - (p + q)) < Rabs r × / 2%nat × (radix × / pPred (vNum b)))%R.
intros p q r H' H'0 H'1 H'2.
cut (Fcanonic radix b (Fnormalize radix b precision r));
[ intros tmp; Casec tmp; intros Fs | idtac ].
3: apply FnormalizeCanonic; auto with arith.
3: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
3: apply ClosestRoundedModeP with (precision := precision); auto.
2: rewrite <- (plusExact1 p q (Fnormalize radix b precision r)); auto.
2: unfold FtoRradix in |- *; rewrite FnormalizeCorrect; auto with arith.
2: replace (FtoR radix r - FtoR radix r)%R with 0%R; [ idtac | ring ].
2: rewrite Rabs_R0.
2: replace 0%R with (0 × (radix × / pPred (vNum b)))%R;
[ apply Rmult_lt_compat_r | ring ].
2: replace 0%R with (0 × / pPred (vNum b))%R;
[ apply Rmult_lt_compat_r | ring ].
2: apply Rinv_0_lt_compat; replace 0%R with (IZR 0); auto with real zarith.
2: apply Rlt_IZR; unfold pPred in |- *; apply Zlt_succ_pred; simpl in |- ×.
2: apply vNumbMoreThanOne with (radix := radix) (precision := precision);
auto with real zarith.
2: cut (1 < radix)%Z; auto with real zarith.
2: replace 0%R with (0 × / 2%nat)%R; [ apply Rmult_lt_compat_r | ring ];
auto with real.
2: case (Rabs_pos (FtoR radix r)); auto.
2: intros H'3; Contradict H'2.
2: apply is_Fzero_rep2 with (radix := radix); auto with real arith.
2: generalize H'3; fold FtoRradix in |- *; unfold Rabs in |- *;
case (Rcase_abs r); auto.
2: intros r0 H'2; replace 0%R with (-0)%R; [ rewrite H'2 | idtac ]; ring.
2: apply (ClosestCompatible b radix (p + q)%R (p + q)%R r); auto.
2: apply sym_eq; apply FnormalizeCorrect; auto.
2: apply FnormalizeBounded; auto with arith.
2: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
2: replace (Fexp (Fnormalize radix b precision r)) with (- dExp b)%Z.
2: unfold Zmin in |- *; case (Fexp p ?= Fexp q)%Z; auto with float.
2: apply sym_equal; case Fs; intros H1 H2; case H2; auto.
apply Rle_lt_trans with (/ 2%nat × Fulp b radix precision r)%R.
apply Rmult_le_reg_l with (r := INR 2); auto with real.
rewrite <- Rmult_assoc; rewrite Rinv_r; auto with real; rewrite Rmult_1_l.
unfold FtoRradix in |- *; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
rewrite <- (Fplus_correct radix); auto with zarith.
apply ClosestUlp; auto.
rewrite Fplus_correct; auto with arith.
replace (Rabs r × / 2%nat × (radix × / pPred (vNum b)))%R with
(/ 2%nat × (Rabs r × (radix × / pPred (vNum b))))%R;
[ apply Rmult_lt_compat_l; auto with real | ring ].
replace (Fulp b radix precision r) with
(Float (pPred (vNum b)) (Zpred (Fexp (Fnormalize radix b precision r))) ×
(radix × / pPred (vNum b)))%R.
apply Rmult_lt_compat_r.
replace 0%R with (radix × 0)%R; [ apply Rmult_lt_compat_l | ring ];
auto with real arith.
apply Rinv_0_lt_compat; replace 0%R with (IZR 0%nat); auto with real arith;
apply Rlt_IZR.
unfold pPred in |- *; apply Zlt_succ_pred;
apply (vNumbMoreThanOne radix) with (precision := precision);
auto with zarith.
unfold FtoRradix in |- *;
rewrite <- (FnormalizeCorrect _ radixMoreThanOne b precision r).
rewrite <- (Fabs_correct radix); auto with arith.
apply FnormalBoundAbs; auto with zarith.
unfold Fulp, FtoRradix, FtoR in |- *; simpl in |- ×.
apply
trans_eq
with
(pPred (vNum b) × / pPred (vNum b) ×
(radix × powerRZ radix (Zpred (Fexp (Fnormalize radix b precision r)))))%R;
[ ring | idtac ]; auto.
rewrite Rinv_r; auto with real arith.
rewrite <- powerRZ_Zs; auto with real.
cut (∀ r : Z, Zsucc (Zpred r) = r);
[ intros Er; rewrite Er | intros r'; unfold Zsucc, Zpred in |- × ];
ring.
apply Rlt_dichotomy_converse; right; red in |- ×.
replace 0%R with (IZR 0); cut (1 < radix)%Z; auto with real zarith.
apply Rlt_dichotomy_converse; right; red in |- ×.
replace 0%R with (IZR 0); auto with real zarith.
unfold pPred in |- *; apply Rlt_IZR; apply Zlt_succ_pred; simpl in |- ×.
apply vNumbMoreThanOne with (radix := radix) (precision := precision);
auto with real arith.
Qed.
Theorem plusErrorBound1bis :
∀ p q r : float,
Fbounded b p →
Fbounded b q →
Closest b radix (p + q) r →
¬ is_Fzero r →
(Rabs (r - (p + q)) ≤ Rabs r × / 2%nat × (radix × / Zpos (vNum b)))%R.
intros p q r H' H'0 H'1 H'2.
cut (Fcanonic radix b (Fnormalize radix b precision r));
[ intros tmp; Casec tmp; intros Fs | idtac ].
3: apply FnormalizeCanonic; auto with arith.
3: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
3: apply ClosestRoundedModeP with (precision := precision); auto.
2: rewrite <- (plusExact1 p q (Fnormalize radix b precision r)); auto.
2: unfold FtoRradix in |- *; rewrite FnormalizeCorrect; auto.
2: replace (FtoR radix r - FtoR radix r)%R with 0%R; [ idtac | ring ].
2: rewrite Rabs_R0.
2: replace 0%R with (0 × (radix × / Zpos (vNum b)))%R;
[ apply Rmult_le_compat_r | ring ]; auto with real zarith.
2: replace 0%R with (0 × / Zpos (vNum b))%R;
[ apply Rmult_le_compat_r | ring ]; auto with real zarith.
2: replace 0%R with (0 × / 2%nat)%R; [ apply Rmult_le_compat_r | ring ];
auto with real zarith.
2: apply (ClosestCompatible b radix (p + q)%R (p + q)%R r); auto.
2: apply sym_eq; apply FnormalizeCorrect; auto.
2: apply FnormalizeBounded; auto with arith.
2: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
2: replace (Fexp (Fnormalize radix b precision r)) with (- dExp b)%Z.
2: unfold Zmin in |- *; case (Fexp p ?= Fexp q)%Z; intuition.
2: case Fs; intros H1 (H2, H3); auto.
apply Rle_trans with (/ 2%nat × Fulp b radix precision r)%R.
replace (Rabs (FtoRradix r - (FtoRradix p + FtoRradix q))) with
(/ 2%nat × (2%nat × Rabs (FtoRradix r - (FtoRradix p + FtoRradix q))))%R;
[ idtac | rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real ].
apply Rmult_le_compat_l; auto with real.
replace (FtoRradix r - (FtoRradix p + FtoRradix q))%R with
(- (FtoRradix p + FtoRradix q - FtoRradix r))%R;
[ rewrite Rabs_Ropp | ring ].
apply (ClosestUlp b radix); auto.
replace (Rabs r × / 2%nat × (radix × / Zpos (vNum b)))%R with
(/ 2%nat × (Rabs r × (radix × / Zpos (vNum b))))%R;
[ apply Rmult_le_compat_l; auto with real | ring ].
replace (Fulp b radix precision r) with
(Zpos (vNum b) ×
FtoR radix (Float 1%nat (Zpred (Fexp (Fnormalize radix b precision r)))) ×
(radix × / Zpos (vNum b)))%R.
apply Rmult_le_compat_r.
replace 0%R with (radix × 0)%R; [ apply Rmult_le_compat_l | ring ];
apply Rlt_le; auto with real arith;
rewrite INR_IZR_INZ; apply Rlt_IZR; simpl in |- *; apply Zlt_1_O;
apply Zlt_le_weak;
apply (vNumbMoreThanOne radix) with (precision := precision);
auto with zarith.
unfold FtoRradix in |- *;
rewrite <- (FnormalizeCorrect _ radixMoreThanOne b precision r).
rewrite <- (Fabs_correct radix); auto with arith.
apply FnormalBoundAbs2 with precision; auto with arith.
unfold Fulp, FtoRradix, FtoR in |- *; simpl in |- ×.
apply
trans_eq
with
(nat_of_P (vNum b) × / nat_of_P (vNum b) ×
(radix × powerRZ radix (Zpred (Fexp (Fnormalize radix b precision r)))))%R;
[ unfold IZR at 1 5; repeat rewrite <- INR_IPR; ring | idtac].
rewrite Rinv_r; auto with real arith.
rewrite <- powerRZ_Zs; auto with real zarith.
rewrite <- Zsucc_pred; ring.
Qed.
Theorem plusErrorBound1withZero :
∀ p q r : float,
Fbounded b p →
Fbounded b q →
Closest b radix (p + q) r →
(Rabs (r - (p + q)) ≤ Rabs r × / 2%nat × (radix × / pPred (vNum b)))%R.
intros p q r H H0 H1.
case (Req_dec r 0); intros Hr.
replace (Rabs (r - (p + q))) with (Rabs r × / 2%nat × 0)%R.
apply Rmult_le_compat_l.
replace 0%R with (Rabs r × 0)%R; [ apply Rmult_le_compat_l | ring ];
auto with real arith.
replace 0%R with (radix × 0)%R; [ apply Rmult_le_compat_l | ring ];
auto with real arith.
apply Rlt_le; apply Rinv_0_lt_compat; auto with real arith.
replace 0%R with (IZR 0%nat); auto with real zarith; apply Rlt_IZR.
apply Zle_lt_trans with (nNormMin radix precision).
apply Zlt_le_weak; apply nNormPos; auto with real zarith.
apply nNormMimLtvNum; auto with real zarith.
rewrite <- plusExactR0 with (3 := H1); auto with real zarith.
rewrite Hr; repeat rewrite Rabs_R0 || (rewrite Rminus_diag_eq; auto); ring.
apply Rlt_le; apply plusErrorBound1; auto.
Contradict Hr; unfold FtoRradix in |- *; apply is_Fzero_rep1; auto.
Qed.
Theorem pPredMoreThanOne : (0 < pPred (vNum b))%Z.
unfold pPred in |- *; apply Zlt_succ_pred; simpl in |- ×.
apply (vNumbMoreThanOne radix) with (precision := precision);
auto with zarith.
Qed.
Theorem pPredMoreThanRadix : (radix < pPred (vNum b))%Z.
apply Zle_lt_trans with (nNormMin radix precision).
pattern radix at 1 in |- *; rewrite <- (Zpower_nat_1 radix);
unfold nNormMin in |- *; auto with zarith.
apply nNormMimLtvNum; auto with zarith.
Qed.
Theorem RoundBound :
∀ x y p : float,
Fbounded b x →
Fbounded b y →
Fbounded b p →
Closest b radix (x + y) p →
(radix < 2%nat × pPred (vNum b))%Z →
(Rabs p ≤
Rabs (x + y) ×
(2%nat × pPred (vNum b) × / (2%nat × pPred (vNum b) - radix)))%R.
intros x y p H H0 H1 H2 H3.
cut (0 < 2%nat × pPred (vNum b))%Z;
[ intros NZ1 | apply Zlt_trans with radix; auto with zarith ].
cut (0 < 2%nat × pPred (vNum b))%R;
[ intros NZ1'
| rewrite INR_IZR_INZ; rewrite <- Rmult_IZR; auto with real zarith ].
cut (radix < 2%nat × pPred (vNum b))%R;
[ intros NZ2
| rewrite INR_IZR_INZ; rewrite <- Rmult_IZR; auto with real zarith ].
replace (Rabs p) with
(Rabs p × ((2%nat × pPred (vNum b) - radix) × / (2%nat × pPred (vNum b))) ×
(2%nat × pPred (vNum b) × / (2%nat × pPred (vNum b) - radix)))%R.
2: replace
(Rabs p × ((2%nat × pPred (vNum b) - radix) × / (2%nat × pPred (vNum b))) ×
(2%nat × pPred (vNum b) × / (2%nat × pPred (vNum b) - radix)))%R with
(Rabs p ×
((2%nat × pPred (vNum b) - radix) × / (2%nat × pPred (vNum b) - radix)) ×
(2%nat × pPred (vNum b) × / (2%nat × pPred (vNum b))))%R;
[ idtac | ring ].
2: repeat rewrite Rinv_r; auto with real zarith; try ring.
apply Rmult_le_compat_r.
replace 0%R with (2%nat × pPred (vNum b) × 0)%R;
[ apply Rmult_le_compat_l | ring ]; auto with real zarith.
replace ((2%nat × pPred (vNum b) - radix) × / (2%nat × pPred (vNum b)))%R
with (1 - radix × / (2%nat × pPred (vNum b)))%R.
2: unfold Rminus in |- *; rewrite Rmult_plus_distr_r; rewrite Rinv_r;
auto with real.
replace (Rabs p × (1 - radix × / (2%nat × pPred (vNum b))))%R with
(Rabs p - Rabs p × (radix × / (2%nat × pPred (vNum b))))%R;
[ idtac | ring; ring ].
apply Rplus_le_reg_l with (Rabs p × (radix × / (2%nat × pPred (vNum b))))%R.
replace
(Rabs (FtoRradix p) × (radix × / (2%nat × pPred (vNum b))) +
(Rabs (FtoRradix p) -
Rabs (FtoRradix p) × (radix × / (2%nat × pPred (vNum b)))))%R with
(Rabs p); [ idtac | ring ].
apply Rle_trans with (Rabs (p - (x + y)) + Rabs (x + y))%R.
pattern (FtoRradix p) at 1 in |- *;
replace (FtoRradix p) with (p - (x + y) + (x + y))%R;
[ apply Rabs_triang | ring ].
rewrite (Rplus_comm (Rabs (p - (x + y))) (Rabs (x + y)));
rewrite
(Rplus_comm (Rabs p × (radix × / (2%nat × pPred (vNum b)))) (Rabs (x + y)))
; apply Rplus_le_compat_l.
replace (Rabs p × (radix × / (2%nat × pPred (vNum b))))%R with
(Rabs p × / 2%nat × (radix × / pPred (vNum b)))%R;
[ apply plusErrorBound1withZero | idtac ]; auto.
rewrite (Rinv_mult_distr 2%nat (pPred (vNum b))); auto with real zarith.
ring.
apply NEq_IZRO; auto with real zarith.
generalize pPredMoreThanOne; auto with zarith.
Qed.
Theorem plusExactExp :
∀ p q pq : float,
Fbounded b p →
Fbounded b q →
Closest b radix (p + q) pq →
ex
(fun r : float ⇒
ex
(fun s : float ⇒
Fbounded b r ∧
Fbounded b s ∧
s = pq :>R ∧
r = (p + q - s)%R :>R ∧
Fexp r = Zmin (Fexp p) (Fexp q) :>Z ∧
(Fexp r ≤ Fexp s)%Z ∧ (Fexp s ≤ Zsucc (Zmax (Fexp p) (Fexp q)))%Z)).
intros p q pq H H0 H1.
case (plusExpBound b radix precision) with (P := Closest b radix) (5 := H1);
auto with zarith.
apply (ClosestRoundedModeP b radix precision); auto with zarith.
intros r (H2, (H3, (H4, H5))); fold FtoRradix in H3.
case (Req_dec (p + q - pq) 0); intros Hr.
cut (Fbounded b (Fzero (Zmin (Fexp p) (Fexp q)))); [ intros Fbs | idtac ].
∃ (Fzero (Zmin (Fexp p) (Fexp q))); ∃ r; repeat (split; auto).
rewrite (FzeroisReallyZero radix); rewrite <- Hr; rewrite <- H3; auto.
case (Zmin_or (Fexp p) (Fexp q)); intros Hz; rewrite Hz;
apply FboundedZeroSameExp; auto.
case (errorBoundedPlus p q pq); auto.
intros error (H6, (H7, H8)).
∃ error; ∃ r; repeat (split; auto).
rewrite H3; auto.
rewrite H8; auto.
Qed.
Theorem plusExactExpCanonic :
∀ c d p q : float,
Fbounded b c →
Fbounded b d →
Fbounded b p →
Fbounded b q →
Closest b radix (c + d) p →
q = (c + d - p)%R :>R →
q ≠ 0%R :>R →
ex
(fun r : float ⇒
ex
(fun s : float ⇒
Fcanonic radix b s ∧
Fbounded b r ∧
s = p :>R ∧
r = (c + d - s)%R :>R ∧
Fexp r = Zmin (Fexp c) (Fexp d) :>Z ∧
(Fexp r < Fexp s)%Z ∧ (Fexp s ≤ Zsucc (Zmax (Fexp c) (Fexp d)))%Z)).
intros c d p q H H0 H1 H2 H3 H4 H5.
case (plusExactExp c d p); auto.
intros r (s, (H6, (H7, (H8, (H9, (H10, (H11, H12))))))).
∃ r; ∃ (Fnormalize radix b precision s).
repeat (split; auto with float).
apply FnormalizeCanonic; auto with arith.
rewrite <- H8; apply (FnormalizeCorrect radix); auto with zarith.
rewrite (FnormalizeCorrect radix); auto with zarith.
apply
ClosestErrorExpStrict
with (radix := radix) (b := b) (precision := precision) (x := (c + d)%R);
auto with float.
apply FnormalizeBounded; auto with arith.
apply (ClosestCompatible b radix (c + d)%R (c + d)%R p); auto.
rewrite (FnormalizeCorrect radix); auto with zarith.
apply FnormalizeBounded; auto with arith.
rewrite (FnormalizeCorrect radix); auto with zarith.
fold FtoRradix in |- *; rewrite H9; rewrite H8; rewrite <- H4; auto.
apply Zle_trans with (Fexp s); auto.
apply FcanonicLeastExp with radix b precision; auto with arith.
apply sym_eq; apply FnormalizeCorrect; auto with real.
apply FnormalizeCanonic; auto with arith.
Qed.
End ClosestP.