libstdc++
bits/hashtable.h
Go to the documentation of this file.
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2017 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 #if __cplusplus > 201402L
37 # include <bits/node_handle.h>
38 #endif
39 
40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 
44  template<typename _Tp, typename _Hash>
45  using __cache_default
46  = __not_<__and_<// Do not cache for fast hasher.
47  __is_fast_hash<_Hash>,
48  // Mandatory to have erase not throwing.
49  __detail::__is_noexcept_hash<_Tp, _Hash>>>;
50 
51  /**
52  * Primary class template _Hashtable.
53  *
54  * @ingroup hashtable-detail
55  *
56  * @tparam _Value CopyConstructible type.
57  *
58  * @tparam _Key CopyConstructible type.
59  *
60  * @tparam _Alloc An allocator type
61  * ([lib.allocator.requirements]) whose _Alloc::value_type is
62  * _Value. As a conforming extension, we allow for
63  * _Alloc::value_type != _Value.
64  *
65  * @tparam _ExtractKey Function object that takes an object of type
66  * _Value and returns a value of type _Key.
67  *
68  * @tparam _Equal Function object that takes two objects of type k
69  * and returns a bool-like value that is true if the two objects
70  * are considered equal.
71  *
72  * @tparam _H1 The hash function. A unary function object with
73  * argument type _Key and result type size_t. Return values should
74  * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
75  *
76  * @tparam _H2 The range-hashing function (in the terminology of
77  * Tavori and Dreizin). A binary function object whose argument
78  * types and result type are all size_t. Given arguments r and N,
79  * the return value is in the range [0, N).
80  *
81  * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
82  * binary function whose argument types are _Key and size_t and
83  * whose result type is size_t. Given arguments k and N, the
84  * return value is in the range [0, N). Default: hash(k, N) =
85  * h2(h1(k), N). If _Hash is anything other than the default, _H1
86  * and _H2 are ignored.
87  *
88  * @tparam _RehashPolicy Policy class with three members, all of
89  * which govern the bucket count. _M_next_bkt(n) returns a bucket
90  * count no smaller than n. _M_bkt_for_elements(n) returns a
91  * bucket count appropriate for an element count of n.
92  * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
93  * current bucket count is n_bkt and the current element count is
94  * n_elt, we need to increase the bucket count. If so, returns
95  * make_pair(true, n), where n is the new bucket count. If not,
96  * returns make_pair(false, <anything>)
97  *
98  * @tparam _Traits Compile-time class with three boolean
99  * std::integral_constant members: __cache_hash_code, __constant_iterators,
100  * __unique_keys.
101  *
102  * Each _Hashtable data structure has:
103  *
104  * - _Bucket[] _M_buckets
105  * - _Hash_node_base _M_before_begin
106  * - size_type _M_bucket_count
107  * - size_type _M_element_count
108  *
109  * with _Bucket being _Hash_node* and _Hash_node containing:
110  *
111  * - _Hash_node* _M_next
112  * - Tp _M_value
113  * - size_t _M_hash_code if cache_hash_code is true
114  *
115  * In terms of Standard containers the hashtable is like the aggregation of:
116  *
117  * - std::forward_list<_Node> containing the elements
118  * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
119  *
120  * The non-empty buckets contain the node before the first node in the
121  * bucket. This design makes it possible to implement something like a
122  * std::forward_list::insert_after on container insertion and
123  * std::forward_list::erase_after on container erase
124  * calls. _M_before_begin is equivalent to
125  * std::forward_list::before_begin. Empty buckets contain
126  * nullptr. Note that one of the non-empty buckets contains
127  * &_M_before_begin which is not a dereferenceable node so the
128  * node pointer in a bucket shall never be dereferenced, only its
129  * next node can be.
130  *
131  * Walking through a bucket's nodes requires a check on the hash code to
132  * see if each node is still in the bucket. Such a design assumes a
133  * quite efficient hash functor and is one of the reasons it is
134  * highly advisable to set __cache_hash_code to true.
135  *
136  * The container iterators are simply built from nodes. This way
137  * incrementing the iterator is perfectly efficient independent of
138  * how many empty buckets there are in the container.
139  *
140  * On insert we compute the element's hash code and use it to find the
141  * bucket index. If the element must be inserted in an empty bucket
142  * we add it at the beginning of the singly linked list and make the
143  * bucket point to _M_before_begin. The bucket that used to point to
144  * _M_before_begin, if any, is updated to point to its new before
145  * begin node.
146  *
147  * On erase, the simple iterator design requires using the hash
148  * functor to get the index of the bucket to update. For this
149  * reason, when __cache_hash_code is set to false the hash functor must
150  * not throw and this is enforced by a static assertion.
151  *
152  * Functionality is implemented by decomposition into base classes,
153  * where the derived _Hashtable class is used in _Map_base,
154  * _Insert, _Rehash_base, and _Equality base classes to access the
155  * "this" pointer. _Hashtable_base is used in the base classes as a
156  * non-recursive, fully-completed-type so that detailed nested type
157  * information, such as iterator type and node type, can be
158  * used. This is similar to the "Curiously Recurring Template
159  * Pattern" (CRTP) technique, but uses a reconstructed, not
160  * explicitly passed, template pattern.
161  *
162  * Base class templates are:
163  * - __detail::_Hashtable_base
164  * - __detail::_Map_base
165  * - __detail::_Insert
166  * - __detail::_Rehash_base
167  * - __detail::_Equality
168  */
169  template<typename _Key, typename _Value, typename _Alloc,
170  typename _ExtractKey, typename _Equal,
171  typename _H1, typename _H2, typename _Hash,
172  typename _RehashPolicy, typename _Traits>
174  : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
175  _H1, _H2, _Hash, _Traits>,
176  public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
177  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
178  public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
179  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
180  public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
181  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182  public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
183  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
185  __alloc_rebind<_Alloc,
186  __detail::_Hash_node<_Value,
187  _Traits::__hash_cached::value>>>
188  {
189  using __traits_type = _Traits;
190  using __hash_cached = typename __traits_type::__hash_cached;
192  using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
193 
195 
196  using __value_alloc_traits =
198  using __node_alloc_traits =
200  using __node_base = typename __hashtable_alloc::__node_base;
201  using __bucket_type = typename __hashtable_alloc::__bucket_type;
202 
203  public:
204  typedef _Key key_type;
205  typedef _Value value_type;
206  typedef _Alloc allocator_type;
207  typedef _Equal key_equal;
208 
209  // mapped_type, if present, comes from _Map_base.
210  // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
211  typedef typename __value_alloc_traits::pointer pointer;
212  typedef typename __value_alloc_traits::const_pointer const_pointer;
213  typedef value_type& reference;
214  typedef const value_type& const_reference;
215 
216  private:
217  using __rehash_type = _RehashPolicy;
218  using __rehash_state = typename __rehash_type::_State;
219 
220  using __constant_iterators = typename __traits_type::__constant_iterators;
221  using __unique_keys = typename __traits_type::__unique_keys;
222 
223  using __key_extract = typename std::conditional<
224  __constant_iterators::value,
225  __detail::_Identity,
226  __detail::_Select1st>::type;
227 
228  using __hashtable_base = __detail::
229  _Hashtable_base<_Key, _Value, _ExtractKey,
230  _Equal, _H1, _H2, _Hash, _Traits>;
231 
232  using __hash_code_base = typename __hashtable_base::__hash_code_base;
233  using __hash_code = typename __hashtable_base::__hash_code;
234  using __ireturn_type = typename __hashtable_base::__ireturn_type;
235 
236  using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
237  _Equal, _H1, _H2, _Hash,
238  _RehashPolicy, _Traits>;
239 
240  using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
241  _ExtractKey, _Equal,
242  _H1, _H2, _Hash,
243  _RehashPolicy, _Traits>;
244 
245  using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
246  _Equal, _H1, _H2, _Hash,
247  _RehashPolicy, _Traits>;
248 
249  using __reuse_or_alloc_node_type =
250  __detail::_ReuseOrAllocNode<__node_alloc_type>;
251 
252  // Metaprogramming for picking apart hash caching.
253  template<typename _Cond>
254  using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
255 
256  template<typename _Cond>
257  using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
258 
259  // Compile-time diagnostics.
260 
261  // _Hash_code_base has everything protected, so use this derived type to
262  // access it.
263  struct __hash_code_base_access : __hash_code_base
264  { using __hash_code_base::_M_bucket_index; };
265 
266  // Getting a bucket index from a node shall not throw because it is used
267  // in methods (erase, swap...) that shall not throw.
268  static_assert(noexcept(declval<const __hash_code_base_access&>()
269  ._M_bucket_index((const __node_type*)nullptr,
270  (std::size_t)0)),
271  "Cache the hash code or qualify your functors involved"
272  " in hash code and bucket index computation with noexcept");
273 
274  // Following two static assertions are necessary to guarantee
275  // that local_iterator will be default constructible.
276 
277  // When hash codes are cached local iterator inherits from H2 functor
278  // which must then be default constructible.
279  static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
280  "Functor used to map hash code to bucket index"
281  " must be default constructible");
282 
283  template<typename _Keya, typename _Valuea, typename _Alloca,
284  typename _ExtractKeya, typename _Equala,
285  typename _H1a, typename _H2a, typename _Hasha,
286  typename _RehashPolicya, typename _Traitsa,
287  bool _Unique_keysa>
288  friend struct __detail::_Map_base;
289 
290  template<typename _Keya, typename _Valuea, typename _Alloca,
291  typename _ExtractKeya, typename _Equala,
292  typename _H1a, typename _H2a, typename _Hasha,
293  typename _RehashPolicya, typename _Traitsa>
294  friend struct __detail::_Insert_base;
295 
296  template<typename _Keya, typename _Valuea, typename _Alloca,
297  typename _ExtractKeya, typename _Equala,
298  typename _H1a, typename _H2a, typename _Hasha,
299  typename _RehashPolicya, typename _Traitsa,
300  bool _Constant_iteratorsa>
301  friend struct __detail::_Insert;
302 
303  public:
304  using size_type = typename __hashtable_base::size_type;
305  using difference_type = typename __hashtable_base::difference_type;
306 
307  using iterator = typename __hashtable_base::iterator;
308  using const_iterator = typename __hashtable_base::const_iterator;
309 
310  using local_iterator = typename __hashtable_base::local_iterator;
311  using const_local_iterator = typename __hashtable_base::
312  const_local_iterator;
313 
314 #if __cplusplus > 201402L
315  using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
316  using insert_return_type = _Node_insert_return<iterator, node_type>;
317 #endif
318 
319  private:
320  __bucket_type* _M_buckets = &_M_single_bucket;
321  size_type _M_bucket_count = 1;
322  __node_base _M_before_begin;
323  size_type _M_element_count = 0;
324  _RehashPolicy _M_rehash_policy;
325 
326  // A single bucket used when only need for 1 bucket. Especially
327  // interesting in move semantic to leave hashtable with only 1 buckets
328  // which is not allocated so that we can have those operations noexcept
329  // qualified.
330  // Note that we can't leave hashtable with 0 bucket without adding
331  // numerous checks in the code to avoid 0 modulus.
332  __bucket_type _M_single_bucket = nullptr;
333 
334  bool
335  _M_uses_single_bucket(__bucket_type* __bkts) const
336  { return __builtin_expect(__bkts == &_M_single_bucket, false); }
337 
338  bool
339  _M_uses_single_bucket() const
340  { return _M_uses_single_bucket(_M_buckets); }
341 
343  _M_base_alloc() { return *this; }
344 
345  __bucket_type*
346  _M_allocate_buckets(size_type __n)
347  {
348  if (__builtin_expect(__n == 1, false))
349  {
350  _M_single_bucket = nullptr;
351  return &_M_single_bucket;
352  }
353 
354  return __hashtable_alloc::_M_allocate_buckets(__n);
355  }
356 
357  void
358  _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
359  {
360  if (_M_uses_single_bucket(__bkts))
361  return;
362 
363  __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
364  }
365 
366  void
367  _M_deallocate_buckets()
368  { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
369 
370  // Gets bucket begin, deals with the fact that non-empty buckets contain
371  // their before begin node.
372  __node_type*
373  _M_bucket_begin(size_type __bkt) const;
374 
375  __node_type*
376  _M_begin() const
377  { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
378 
379  template<typename _NodeGenerator>
380  void
381  _M_assign(const _Hashtable&, const _NodeGenerator&);
382 
383  void
384  _M_move_assign(_Hashtable&&, std::true_type);
385 
386  void
387  _M_move_assign(_Hashtable&&, std::false_type);
388 
389  void
390  _M_reset() noexcept;
391 
392  _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
393  const _Equal& __eq, const _ExtractKey& __exk,
394  const allocator_type& __a)
395  : __hashtable_base(__exk, __h1, __h2, __h, __eq),
396  __hashtable_alloc(__node_alloc_type(__a))
397  { }
398 
399  public:
400  // Constructor, destructor, assignment, swap
401  _Hashtable() = default;
402  _Hashtable(size_type __bucket_hint,
403  const _H1&, const _H2&, const _Hash&,
404  const _Equal&, const _ExtractKey&,
405  const allocator_type&);
406 
407  template<typename _InputIterator>
408  _Hashtable(_InputIterator __first, _InputIterator __last,
409  size_type __bucket_hint,
410  const _H1&, const _H2&, const _Hash&,
411  const _Equal&, const _ExtractKey&,
412  const allocator_type&);
413 
414  _Hashtable(const _Hashtable&);
415 
416  _Hashtable(_Hashtable&&) noexcept;
417 
418  _Hashtable(const _Hashtable&, const allocator_type&);
419 
420  _Hashtable(_Hashtable&&, const allocator_type&);
421 
422  // Use delegating constructors.
423  explicit
424  _Hashtable(const allocator_type& __a)
425  : __hashtable_alloc(__node_alloc_type(__a))
426  { }
427 
428  explicit
429  _Hashtable(size_type __n,
430  const _H1& __hf = _H1(),
431  const key_equal& __eql = key_equal(),
432  const allocator_type& __a = allocator_type())
433  : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
434  __key_extract(), __a)
435  { }
436 
437  template<typename _InputIterator>
438  _Hashtable(_InputIterator __f, _InputIterator __l,
439  size_type __n = 0,
440  const _H1& __hf = _H1(),
441  const key_equal& __eql = key_equal(),
442  const allocator_type& __a = allocator_type())
443  : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
444  __key_extract(), __a)
445  { }
446 
448  size_type __n = 0,
449  const _H1& __hf = _H1(),
450  const key_equal& __eql = key_equal(),
451  const allocator_type& __a = allocator_type())
452  : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
453  __key_extract(), __a)
454  { }
455 
456  _Hashtable&
457  operator=(const _Hashtable& __ht);
458 
459  _Hashtable&
460  operator=(_Hashtable&& __ht)
461  noexcept(__node_alloc_traits::_S_nothrow_move()
462  && is_nothrow_move_assignable<_H1>::value
463  && is_nothrow_move_assignable<_Equal>::value)
464  {
465  constexpr bool __move_storage =
466  __node_alloc_traits::_S_propagate_on_move_assign()
467  || __node_alloc_traits::_S_always_equal();
468  _M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
469  return *this;
470  }
471 
472  _Hashtable&
473  operator=(initializer_list<value_type> __l)
474  {
475  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
476  _M_before_begin._M_nxt = nullptr;
477  clear();
478  this->_M_insert_range(__l.begin(), __l.end(), __roan);
479  return *this;
480  }
481 
482  ~_Hashtable() noexcept;
483 
484  void
485  swap(_Hashtable&)
486  noexcept(__and_<__is_nothrow_swappable<_H1>,
487  __is_nothrow_swappable<_Equal>>::value);
488 
489  // Basic container operations
490  iterator
491  begin() noexcept
492  { return iterator(_M_begin()); }
493 
494  const_iterator
495  begin() const noexcept
496  { return const_iterator(_M_begin()); }
497 
498  iterator
499  end() noexcept
500  { return iterator(nullptr); }
501 
502  const_iterator
503  end() const noexcept
504  { return const_iterator(nullptr); }
505 
506  const_iterator
507  cbegin() const noexcept
508  { return const_iterator(_M_begin()); }
509 
510  const_iterator
511  cend() const noexcept
512  { return const_iterator(nullptr); }
513 
514  size_type
515  size() const noexcept
516  { return _M_element_count; }
517 
518  bool
519  empty() const noexcept
520  { return size() == 0; }
521 
522  allocator_type
523  get_allocator() const noexcept
524  { return allocator_type(this->_M_node_allocator()); }
525 
526  size_type
527  max_size() const noexcept
528  { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
529 
530  // Observers
531  key_equal
532  key_eq() const
533  { return this->_M_eq(); }
534 
535  // hash_function, if present, comes from _Hash_code_base.
536 
537  // Bucket operations
538  size_type
539  bucket_count() const noexcept
540  { return _M_bucket_count; }
541 
542  size_type
543  max_bucket_count() const noexcept
544  { return max_size(); }
545 
546  size_type
547  bucket_size(size_type __n) const
548  { return std::distance(begin(__n), end(__n)); }
549 
550  size_type
551  bucket(const key_type& __k) const
552  { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
553 
554  local_iterator
555  begin(size_type __n)
556  {
557  return local_iterator(*this, _M_bucket_begin(__n),
558  __n, _M_bucket_count);
559  }
560 
561  local_iterator
562  end(size_type __n)
563  { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
564 
565  const_local_iterator
566  begin(size_type __n) const
567  {
568  return const_local_iterator(*this, _M_bucket_begin(__n),
569  __n, _M_bucket_count);
570  }
571 
572  const_local_iterator
573  end(size_type __n) const
574  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
575 
576  // DR 691.
577  const_local_iterator
578  cbegin(size_type __n) const
579  {
580  return const_local_iterator(*this, _M_bucket_begin(__n),
581  __n, _M_bucket_count);
582  }
583 
584  const_local_iterator
585  cend(size_type __n) const
586  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
587 
588  float
589  load_factor() const noexcept
590  {
591  return static_cast<float>(size()) / static_cast<float>(bucket_count());
592  }
593 
594  // max_load_factor, if present, comes from _Rehash_base.
595 
596  // Generalization of max_load_factor. Extension, not found in
597  // TR1. Only useful if _RehashPolicy is something other than
598  // the default.
599  const _RehashPolicy&
600  __rehash_policy() const
601  { return _M_rehash_policy; }
602 
603  void
604  __rehash_policy(const _RehashPolicy& __pol)
605  { _M_rehash_policy = __pol; }
606 
607  // Lookup.
608  iterator
609  find(const key_type& __k);
610 
611  const_iterator
612  find(const key_type& __k) const;
613 
614  size_type
615  count(const key_type& __k) const;
616 
618  equal_range(const key_type& __k);
619 
621  equal_range(const key_type& __k) const;
622 
623  protected:
624  // Bucket index computation helpers.
625  size_type
626  _M_bucket_index(__node_type* __n) const noexcept
627  { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
628 
629  size_type
630  _M_bucket_index(const key_type& __k, __hash_code __c) const
631  { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
632 
633  // Find and insert helper functions and types
634  // Find the node before the one matching the criteria.
635  __node_base*
636  _M_find_before_node(size_type, const key_type&, __hash_code) const;
637 
638  __node_type*
639  _M_find_node(size_type __bkt, const key_type& __key,
640  __hash_code __c) const
641  {
642  __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
643  if (__before_n)
644  return static_cast<__node_type*>(__before_n->_M_nxt);
645  return nullptr;
646  }
647 
648  // Insert a node at the beginning of a bucket.
649  void
650  _M_insert_bucket_begin(size_type, __node_type*);
651 
652  // Remove the bucket first node
653  void
654  _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
655  size_type __next_bkt);
656 
657  // Get the node before __n in the bucket __bkt
658  __node_base*
659  _M_get_previous_node(size_type __bkt, __node_base* __n);
660 
661  // Insert node with hash code __code, in bucket bkt if no rehash (assumes
662  // no element with its key already present). Take ownership of the node,
663  // deallocate it on exception.
664  iterator
665  _M_insert_unique_node(size_type __bkt, __hash_code __code,
666  __node_type* __n);
667 
668  // Insert node with hash code __code. Take ownership of the node,
669  // deallocate it on exception.
670  iterator
671  _M_insert_multi_node(__node_type* __hint,
672  __hash_code __code, __node_type* __n);
673 
674  template<typename... _Args>
676  _M_emplace(std::true_type, _Args&&... __args);
677 
678  template<typename... _Args>
679  iterator
680  _M_emplace(std::false_type __uk, _Args&&... __args)
681  { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
682 
683  // Emplace with hint, useless when keys are unique.
684  template<typename... _Args>
685  iterator
686  _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
687  { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
688 
689  template<typename... _Args>
690  iterator
691  _M_emplace(const_iterator, std::false_type, _Args&&... __args);
692 
693  template<typename _Arg, typename _NodeGenerator>
695  _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
696 
697  template<typename _Arg, typename _NodeGenerator>
698  iterator
699  _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
700  std::false_type __uk)
701  {
702  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
703  __uk);
704  }
705 
706  // Insert with hint, not used when keys are unique.
707  template<typename _Arg, typename _NodeGenerator>
708  iterator
709  _M_insert(const_iterator, _Arg&& __arg,
710  const _NodeGenerator& __node_gen, std::true_type __uk)
711  {
712  return
713  _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
714  }
715 
716  // Insert with hint when keys are not unique.
717  template<typename _Arg, typename _NodeGenerator>
718  iterator
719  _M_insert(const_iterator, _Arg&&,
720  const _NodeGenerator&, std::false_type);
721 
722  size_type
723  _M_erase(std::true_type, const key_type&);
724 
725  size_type
726  _M_erase(std::false_type, const key_type&);
727 
728  iterator
729  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
730 
731  public:
732  // Emplace
733  template<typename... _Args>
734  __ireturn_type
735  emplace(_Args&&... __args)
736  { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
737 
738  template<typename... _Args>
739  iterator
740  emplace_hint(const_iterator __hint, _Args&&... __args)
741  {
742  return _M_emplace(__hint, __unique_keys(),
743  std::forward<_Args>(__args)...);
744  }
745 
746  // Insert member functions via inheritance.
747 
748  // Erase
749  iterator
750  erase(const_iterator);
751 
752  // LWG 2059.
753  iterator
754  erase(iterator __it)
755  { return erase(const_iterator(__it)); }
756 
757  size_type
758  erase(const key_type& __k)
759  { return _M_erase(__unique_keys(), __k); }
760 
761  iterator
762  erase(const_iterator, const_iterator);
763 
764  void
765  clear() noexcept;
766 
767  // Set number of buckets to be appropriate for container of n element.
768  void rehash(size_type __n);
769 
770  // DR 1189.
771  // reserve, if present, comes from _Rehash_base.
772 
773 #if __cplusplus > 201402L
774  /// Re-insert an extracted node into a container with unique keys.
775  insert_return_type
776  _M_reinsert_node(node_type&& __nh)
777  {
778  insert_return_type __ret;
779  if (__nh.empty())
780  __ret.position = end();
781  else
782  {
783  __glibcxx_assert(get_allocator() == __nh.get_allocator());
784 
785  const key_type& __k = __nh._M_key();
786  __hash_code __code = this->_M_hash_code(__k);
787  size_type __bkt = _M_bucket_index(__k, __code);
788  if (__node_type* __n = _M_find_node(__bkt, __k, __code))
789  {
790  __ret.node = std::move(__nh);
791  __ret.position = iterator(__n);
792  __ret.inserted = false;
793  }
794  else
795  {
796  __ret.position
797  = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
798  __nh._M_ptr = nullptr;
799  __ret.inserted = true;
800  }
801  }
802  return __ret;
803  }
804 
805  /// Re-insert an extracted node into a container with equivalent keys.
806  iterator
807  _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
808  {
809  iterator __ret;
810  if (__nh.empty())
811  __ret = end();
812  else
813  {
814  __glibcxx_assert(get_allocator() == __nh.get_allocator());
815 
816  auto __code = this->_M_hash_code(__nh._M_key());
817  auto __node = std::exchange(__nh._M_ptr, nullptr);
818  // FIXME: this deallocates the node on exception.
819  __ret = _M_insert_multi_node(__hint._M_cur, __code, __node);
820  }
821  return __ret;
822  }
823 
824  /// Extract a node.
825  node_type
826  extract(const_iterator __pos)
827  {
828  __node_type* __n = __pos._M_cur;
829  size_t __bkt = _M_bucket_index(__n);
830 
831  // Look for previous node to unlink it from the erased one, this
832  // is why we need buckets to contain the before begin to make
833  // this search fast.
834  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
835 
836  if (__prev_n == _M_buckets[__bkt])
837  _M_remove_bucket_begin(__bkt, __n->_M_next(),
838  __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
839  else if (__n->_M_nxt)
840  {
841  size_type __next_bkt = _M_bucket_index(__n->_M_next());
842  if (__next_bkt != __bkt)
843  _M_buckets[__next_bkt] = __prev_n;
844  }
845 
846  __prev_n->_M_nxt = __n->_M_nxt;
847  __n->_M_nxt = nullptr;
848  --_M_element_count;
849  return { __n, this->_M_node_allocator() };
850  }
851 
852  /// Extract a node.
853  node_type
854  extract(const _Key& __k)
855  {
856  node_type __nh;
857  auto __pos = find(__k);
858  if (__pos != end())
859  __nh = extract(const_iterator(__pos));
860  return __nh;
861  }
862 
863  /// Merge from a compatible container into one with unique keys.
864  template<typename _Compatible_Hashtable>
865  void
866  _M_merge_unique(_Compatible_Hashtable& __src) noexcept
867  {
868  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
869  node_type>, "Node types are compatible");
870  __glibcxx_assert(get_allocator() == __src.get_allocator());
871 
872  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
873  {
874  auto __pos = __i++;
875  const key_type& __k = this->_M_extract()(__pos._M_cur->_M_v());
876  __hash_code __code = this->_M_hash_code(__k);
877  size_type __bkt = _M_bucket_index(__k, __code);
878  if (_M_find_node(__bkt, __k, __code) == nullptr)
879  {
880  auto __nh = __src.extract(__pos);
881  _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
882  __nh._M_ptr = nullptr;
883  }
884  }
885  }
886 
887  /// Merge from a compatible container into one with equivalent keys.
888  template<typename _Compatible_Hashtable>
889  void
890  _M_merge_multi(_Compatible_Hashtable& __src) noexcept
891  {
892  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
893  node_type>, "Node types are compatible");
894  __glibcxx_assert(get_allocator() == __src.get_allocator());
895 
896  this->reserve(size() + __src.size());
897  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
898  _M_reinsert_node_multi(cend(), __src.extract(__i++));
899  }
900 #endif // C++17
901 
902  private:
903  // Helper rehash method used when keys are unique.
904  void _M_rehash_aux(size_type __n, std::true_type);
905 
906  // Helper rehash method used when keys can be non-unique.
907  void _M_rehash_aux(size_type __n, std::false_type);
908 
909  // Unconditionally change size of bucket array to n, restore
910  // hash policy state to __state on exception.
911  void _M_rehash(size_type __n, const __rehash_state& __state);
912  };
913 
914 
915  // Definitions of class template _Hashtable's out-of-line member functions.
916  template<typename _Key, typename _Value,
917  typename _Alloc, typename _ExtractKey, typename _Equal,
918  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
919  typename _Traits>
920  auto
921  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
922  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
923  _M_bucket_begin(size_type __bkt) const
924  -> __node_type*
925  {
926  __node_base* __n = _M_buckets[__bkt];
927  return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
928  }
929 
930  template<typename _Key, typename _Value,
931  typename _Alloc, typename _ExtractKey, typename _Equal,
932  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
933  typename _Traits>
934  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
935  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
936  _Hashtable(size_type __bucket_hint,
937  const _H1& __h1, const _H2& __h2, const _Hash& __h,
938  const _Equal& __eq, const _ExtractKey& __exk,
939  const allocator_type& __a)
940  : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
941  {
942  auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
943  if (__bkt > _M_bucket_count)
944  {
945  _M_buckets = _M_allocate_buckets(__bkt);
946  _M_bucket_count = __bkt;
947  }
948  }
949 
950  template<typename _Key, typename _Value,
951  typename _Alloc, typename _ExtractKey, typename _Equal,
952  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
953  typename _Traits>
954  template<typename _InputIterator>
955  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
956  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
957  _Hashtable(_InputIterator __f, _InputIterator __l,
958  size_type __bucket_hint,
959  const _H1& __h1, const _H2& __h2, const _Hash& __h,
960  const _Equal& __eq, const _ExtractKey& __exk,
961  const allocator_type& __a)
962  : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
963  {
964  auto __nb_elems = __detail::__distance_fw(__f, __l);
965  auto __bkt_count =
966  _M_rehash_policy._M_next_bkt(
967  std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
968  __bucket_hint));
969 
970  if (__bkt_count > _M_bucket_count)
971  {
972  _M_buckets = _M_allocate_buckets(__bkt_count);
973  _M_bucket_count = __bkt_count;
974  }
975 
976  for (; __f != __l; ++__f)
977  this->insert(*__f);
978  }
979 
980  template<typename _Key, typename _Value,
981  typename _Alloc, typename _ExtractKey, typename _Equal,
982  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
983  typename _Traits>
984  auto
985  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
986  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
987  operator=(const _Hashtable& __ht)
988  -> _Hashtable&
989  {
990  if (&__ht == this)
991  return *this;
992 
993  if (__node_alloc_traits::_S_propagate_on_copy_assign())
994  {
995  auto& __this_alloc = this->_M_node_allocator();
996  auto& __that_alloc = __ht._M_node_allocator();
997  if (!__node_alloc_traits::_S_always_equal()
998  && __this_alloc != __that_alloc)
999  {
1000  // Replacement allocator cannot free existing storage.
1001  this->_M_deallocate_nodes(_M_begin());
1002  _M_before_begin._M_nxt = nullptr;
1003  _M_deallocate_buckets();
1004  _M_buckets = nullptr;
1005  std::__alloc_on_copy(__this_alloc, __that_alloc);
1006  __hashtable_base::operator=(__ht);
1007  _M_bucket_count = __ht._M_bucket_count;
1008  _M_element_count = __ht._M_element_count;
1009  _M_rehash_policy = __ht._M_rehash_policy;
1010  __try
1011  {
1012  _M_assign(__ht,
1013  [this](const __node_type* __n)
1014  { return this->_M_allocate_node(__n->_M_v()); });
1015  }
1016  __catch(...)
1017  {
1018  // _M_assign took care of deallocating all memory. Now we
1019  // must make sure this instance remains in a usable state.
1020  _M_reset();
1021  __throw_exception_again;
1022  }
1023  return *this;
1024  }
1025  std::__alloc_on_copy(__this_alloc, __that_alloc);
1026  }
1027 
1028  // Reuse allocated buckets and nodes.
1029  __bucket_type* __former_buckets = nullptr;
1030  std::size_t __former_bucket_count = _M_bucket_count;
1031  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1032 
1033  if (_M_bucket_count != __ht._M_bucket_count)
1034  {
1035  __former_buckets = _M_buckets;
1036  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1037  _M_bucket_count = __ht._M_bucket_count;
1038  }
1039  else
1040  __builtin_memset(_M_buckets, 0,
1041  _M_bucket_count * sizeof(__bucket_type));
1042 
1043  __try
1044  {
1045  __hashtable_base::operator=(__ht);
1046  _M_element_count = __ht._M_element_count;
1047  _M_rehash_policy = __ht._M_rehash_policy;
1048  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1049  _M_before_begin._M_nxt = nullptr;
1050  _M_assign(__ht,
1051  [&__roan](const __node_type* __n)
1052  { return __roan(__n->_M_v()); });
1053  if (__former_buckets)
1054  _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1055  }
1056  __catch(...)
1057  {
1058  if (__former_buckets)
1059  {
1060  // Restore previous buckets.
1061  _M_deallocate_buckets();
1062  _M_rehash_policy._M_reset(__former_state);
1063  _M_buckets = __former_buckets;
1064  _M_bucket_count = __former_bucket_count;
1065  }
1066  __builtin_memset(_M_buckets, 0,
1067  _M_bucket_count * sizeof(__bucket_type));
1068  __throw_exception_again;
1069  }
1070  return *this;
1071  }
1072 
1073  template<typename _Key, typename _Value,
1074  typename _Alloc, typename _ExtractKey, typename _Equal,
1075  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1076  typename _Traits>
1077  template<typename _NodeGenerator>
1078  void
1079  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1080  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1081  _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
1082  {
1083  __bucket_type* __buckets = nullptr;
1084  if (!_M_buckets)
1085  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1086 
1087  __try
1088  {
1089  if (!__ht._M_before_begin._M_nxt)
1090  return;
1091 
1092  // First deal with the special first node pointed to by
1093  // _M_before_begin.
1094  __node_type* __ht_n = __ht._M_begin();
1095  __node_type* __this_n = __node_gen(__ht_n);
1096  this->_M_copy_code(__this_n, __ht_n);
1097  _M_before_begin._M_nxt = __this_n;
1098  _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1099 
1100  // Then deal with other nodes.
1101  __node_base* __prev_n = __this_n;
1102  for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1103  {
1104  __this_n = __node_gen(__ht_n);
1105  __prev_n->_M_nxt = __this_n;
1106  this->_M_copy_code(__this_n, __ht_n);
1107  size_type __bkt = _M_bucket_index(__this_n);
1108  if (!_M_buckets[__bkt])
1109  _M_buckets[__bkt] = __prev_n;
1110  __prev_n = __this_n;
1111  }
1112  }
1113  __catch(...)
1114  {
1115  clear();
1116  if (__buckets)
1117  _M_deallocate_buckets();
1118  __throw_exception_again;
1119  }
1120  }
1121 
1122  template<typename _Key, typename _Value,
1123  typename _Alloc, typename _ExtractKey, typename _Equal,
1124  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1125  typename _Traits>
1126  void
1127  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1128  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1129  _M_reset() noexcept
1130  {
1131  _M_rehash_policy._M_reset();
1132  _M_bucket_count = 1;
1133  _M_single_bucket = nullptr;
1134  _M_buckets = &_M_single_bucket;
1135  _M_before_begin._M_nxt = nullptr;
1136  _M_element_count = 0;
1137  }
1138 
1139  template<typename _Key, typename _Value,
1140  typename _Alloc, typename _ExtractKey, typename _Equal,
1141  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1142  typename _Traits>
1143  void
1144  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1145  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1146  _M_move_assign(_Hashtable&& __ht, std::true_type)
1147  {
1148  this->_M_deallocate_nodes(_M_begin());
1149  _M_deallocate_buckets();
1150  __hashtable_base::operator=(std::move(__ht));
1151  _M_rehash_policy = __ht._M_rehash_policy;
1152  if (!__ht._M_uses_single_bucket())
1153  _M_buckets = __ht._M_buckets;
1154  else
1155  {
1156  _M_buckets = &_M_single_bucket;
1157  _M_single_bucket = __ht._M_single_bucket;
1158  }
1159  _M_bucket_count = __ht._M_bucket_count;
1160  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1161  _M_element_count = __ht._M_element_count;
1162  std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1163 
1164  // Fix buckets containing the _M_before_begin pointers that can't be
1165  // moved.
1166  if (_M_begin())
1167  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1168  __ht._M_reset();
1169  }
1170 
1171  template<typename _Key, typename _Value,
1172  typename _Alloc, typename _ExtractKey, typename _Equal,
1173  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1174  typename _Traits>
1175  void
1176  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1177  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1178  _M_move_assign(_Hashtable&& __ht, std::false_type)
1179  {
1180  if (__ht._M_node_allocator() == this->_M_node_allocator())
1181  _M_move_assign(std::move(__ht), std::true_type());
1182  else
1183  {
1184  // Can't move memory, move elements then.
1185  __bucket_type* __former_buckets = nullptr;
1186  size_type __former_bucket_count = _M_bucket_count;
1187  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1188 
1189  if (_M_bucket_count != __ht._M_bucket_count)
1190  {
1191  __former_buckets = _M_buckets;
1192  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1193  _M_bucket_count = __ht._M_bucket_count;
1194  }
1195  else
1196  __builtin_memset(_M_buckets, 0,
1197  _M_bucket_count * sizeof(__bucket_type));
1198 
1199  __try
1200  {
1201  __hashtable_base::operator=(std::move(__ht));
1202  _M_element_count = __ht._M_element_count;
1203  _M_rehash_policy = __ht._M_rehash_policy;
1204  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1205  _M_before_begin._M_nxt = nullptr;
1206  _M_assign(__ht,
1207  [&__roan](__node_type* __n)
1208  { return __roan(std::move_if_noexcept(__n->_M_v())); });
1209 
1210  if (__former_buckets)
1211  _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1212  __ht.clear();
1213  }
1214  __catch(...)
1215  {
1216  if (__former_buckets)
1217  {
1218  _M_deallocate_buckets();
1219  _M_rehash_policy._M_reset(__former_state);
1220  _M_buckets = __former_buckets;
1221  _M_bucket_count = __former_bucket_count;
1222  }
1223  __builtin_memset(_M_buckets, 0,
1224  _M_bucket_count * sizeof(__bucket_type));
1225  __throw_exception_again;
1226  }
1227  }
1228  }
1229 
1230  template<typename _Key, typename _Value,
1231  typename _Alloc, typename _ExtractKey, typename _Equal,
1232  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1233  typename _Traits>
1234  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1235  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1236  _Hashtable(const _Hashtable& __ht)
1237  : __hashtable_base(__ht),
1238  __map_base(__ht),
1239  __rehash_base(__ht),
1240  __hashtable_alloc(
1241  __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1242  _M_buckets(nullptr),
1243  _M_bucket_count(__ht._M_bucket_count),
1244  _M_element_count(__ht._M_element_count),
1245  _M_rehash_policy(__ht._M_rehash_policy)
1246  {
1247  _M_assign(__ht,
1248  [this](const __node_type* __n)
1249  { return this->_M_allocate_node(__n->_M_v()); });
1250  }
1251 
1252  template<typename _Key, typename _Value,
1253  typename _Alloc, typename _ExtractKey, typename _Equal,
1254  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1255  typename _Traits>
1256  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1257  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1258  _Hashtable(_Hashtable&& __ht) noexcept
1259  : __hashtable_base(__ht),
1260  __map_base(__ht),
1261  __rehash_base(__ht),
1262  __hashtable_alloc(std::move(__ht._M_base_alloc())),
1263  _M_buckets(__ht._M_buckets),
1264  _M_bucket_count(__ht._M_bucket_count),
1265  _M_before_begin(__ht._M_before_begin._M_nxt),
1266  _M_element_count(__ht._M_element_count),
1267  _M_rehash_policy(__ht._M_rehash_policy)
1268  {
1269  // Update, if necessary, buckets if __ht is using its single bucket.
1270  if (__ht._M_uses_single_bucket())
1271  {
1272  _M_buckets = &_M_single_bucket;
1273  _M_single_bucket = __ht._M_single_bucket;
1274  }
1275 
1276  // Update, if necessary, bucket pointing to before begin that hasn't
1277  // moved.
1278  if (_M_begin())
1279  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1280 
1281  __ht._M_reset();
1282  }
1283 
1284  template<typename _Key, typename _Value,
1285  typename _Alloc, typename _ExtractKey, typename _Equal,
1286  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1287  typename _Traits>
1288  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1289  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1290  _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1291  : __hashtable_base(__ht),
1292  __map_base(__ht),
1293  __rehash_base(__ht),
1294  __hashtable_alloc(__node_alloc_type(__a)),
1295  _M_buckets(),
1296  _M_bucket_count(__ht._M_bucket_count),
1297  _M_element_count(__ht._M_element_count),
1298  _M_rehash_policy(__ht._M_rehash_policy)
1299  {
1300  _M_assign(__ht,
1301  [this](const __node_type* __n)
1302  { return this->_M_allocate_node(__n->_M_v()); });
1303  }
1304 
1305  template<typename _Key, typename _Value,
1306  typename _Alloc, typename _ExtractKey, typename _Equal,
1307  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1308  typename _Traits>
1309  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1310  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1311  _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1312  : __hashtable_base(__ht),
1313  __map_base(__ht),
1314  __rehash_base(__ht),
1315  __hashtable_alloc(__node_alloc_type(__a)),
1316  _M_buckets(nullptr),
1317  _M_bucket_count(__ht._M_bucket_count),
1318  _M_element_count(__ht._M_element_count),
1319  _M_rehash_policy(__ht._M_rehash_policy)
1320  {
1321  if (__ht._M_node_allocator() == this->_M_node_allocator())
1322  {
1323  if (__ht._M_uses_single_bucket())
1324  {
1325  _M_buckets = &_M_single_bucket;
1326  _M_single_bucket = __ht._M_single_bucket;
1327  }
1328  else
1329  _M_buckets = __ht._M_buckets;
1330 
1331  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1332  // Update, if necessary, bucket pointing to before begin that hasn't
1333  // moved.
1334  if (_M_begin())
1335  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1336  __ht._M_reset();
1337  }
1338  else
1339  {
1340  _M_assign(__ht,
1341  [this](__node_type* __n)
1342  {
1343  return this->_M_allocate_node(
1344  std::move_if_noexcept(__n->_M_v()));
1345  });
1346  __ht.clear();
1347  }
1348  }
1349 
1350  template<typename _Key, typename _Value,
1351  typename _Alloc, typename _ExtractKey, typename _Equal,
1352  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1353  typename _Traits>
1354  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1355  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1356  ~_Hashtable() noexcept
1357  {
1358  clear();
1359  _M_deallocate_buckets();
1360  }
1361 
1362  template<typename _Key, typename _Value,
1363  typename _Alloc, typename _ExtractKey, typename _Equal,
1364  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1365  typename _Traits>
1366  void
1367  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1368  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1369  swap(_Hashtable& __x)
1370  noexcept(__and_<__is_nothrow_swappable<_H1>,
1371  __is_nothrow_swappable<_Equal>>::value)
1372  {
1373  // The only base class with member variables is hash_code_base.
1374  // We define _Hash_code_base::_M_swap because different
1375  // specializations have different members.
1376  this->_M_swap(__x);
1377 
1378  std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1379  std::swap(_M_rehash_policy, __x._M_rehash_policy);
1380 
1381  // Deal properly with potentially moved instances.
1382  if (this->_M_uses_single_bucket())
1383  {
1384  if (!__x._M_uses_single_bucket())
1385  {
1386  _M_buckets = __x._M_buckets;
1387  __x._M_buckets = &__x._M_single_bucket;
1388  }
1389  }
1390  else if (__x._M_uses_single_bucket())
1391  {
1392  __x._M_buckets = _M_buckets;
1393  _M_buckets = &_M_single_bucket;
1394  }
1395  else
1396  std::swap(_M_buckets, __x._M_buckets);
1397 
1398  std::swap(_M_bucket_count, __x._M_bucket_count);
1399  std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1400  std::swap(_M_element_count, __x._M_element_count);
1401  std::swap(_M_single_bucket, __x._M_single_bucket);
1402 
1403  // Fix buckets containing the _M_before_begin pointers that can't be
1404  // swapped.
1405  if (_M_begin())
1406  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1407 
1408  if (__x._M_begin())
1409  __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1410  = &__x._M_before_begin;
1411  }
1412 
1413  template<typename _Key, typename _Value,
1414  typename _Alloc, typename _ExtractKey, typename _Equal,
1415  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1416  typename _Traits>
1417  auto
1418  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1419  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1420  find(const key_type& __k)
1421  -> iterator
1422  {
1423  __hash_code __code = this->_M_hash_code(__k);
1424  std::size_t __n = _M_bucket_index(__k, __code);
1425  __node_type* __p = _M_find_node(__n, __k, __code);
1426  return __p ? iterator(__p) : end();
1427  }
1428 
1429  template<typename _Key, typename _Value,
1430  typename _Alloc, typename _ExtractKey, typename _Equal,
1431  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1432  typename _Traits>
1433  auto
1434  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1435  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1436  find(const key_type& __k) const
1437  -> const_iterator
1438  {
1439  __hash_code __code = this->_M_hash_code(__k);
1440  std::size_t __n = _M_bucket_index(__k, __code);
1441  __node_type* __p = _M_find_node(__n, __k, __code);
1442  return __p ? const_iterator(__p) : end();
1443  }
1444 
1445  template<typename _Key, typename _Value,
1446  typename _Alloc, typename _ExtractKey, typename _Equal,
1447  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1448  typename _Traits>
1449  auto
1450  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1451  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1452  count(const key_type& __k) const
1453  -> size_type
1454  {
1455  __hash_code __code = this->_M_hash_code(__k);
1456  std::size_t __n = _M_bucket_index(__k, __code);
1457  __node_type* __p = _M_bucket_begin(__n);
1458  if (!__p)
1459  return 0;
1460 
1461  std::size_t __result = 0;
1462  for (;; __p = __p->_M_next())
1463  {
1464  if (this->_M_equals(__k, __code, __p))
1465  ++__result;
1466  else if (__result)
1467  // All equivalent values are next to each other, if we
1468  // found a non-equivalent value after an equivalent one it
1469  // means that we won't find any new equivalent value.
1470  break;
1471  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1472  break;
1473  }
1474  return __result;
1475  }
1476 
1477  template<typename _Key, typename _Value,
1478  typename _Alloc, typename _ExtractKey, typename _Equal,
1479  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1480  typename _Traits>
1481  auto
1482  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1483  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1484  equal_range(const key_type& __k)
1485  -> pair<iterator, iterator>
1486  {
1487  __hash_code __code = this->_M_hash_code(__k);
1488  std::size_t __n = _M_bucket_index(__k, __code);
1489  __node_type* __p = _M_find_node(__n, __k, __code);
1490 
1491  if (__p)
1492  {
1493  __node_type* __p1 = __p->_M_next();
1494  while (__p1 && _M_bucket_index(__p1) == __n
1495  && this->_M_equals(__k, __code, __p1))
1496  __p1 = __p1->_M_next();
1497 
1498  return std::make_pair(iterator(__p), iterator(__p1));
1499  }
1500  else
1501  return std::make_pair(end(), end());
1502  }
1503 
1504  template<typename _Key, typename _Value,
1505  typename _Alloc, typename _ExtractKey, typename _Equal,
1506  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1507  typename _Traits>
1508  auto
1509  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1510  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1511  equal_range(const key_type& __k) const
1512  -> pair<const_iterator, const_iterator>
1513  {
1514  __hash_code __code = this->_M_hash_code(__k);
1515  std::size_t __n = _M_bucket_index(__k, __code);
1516  __node_type* __p = _M_find_node(__n, __k, __code);
1517 
1518  if (__p)
1519  {
1520  __node_type* __p1 = __p->_M_next();
1521  while (__p1 && _M_bucket_index(__p1) == __n
1522  && this->_M_equals(__k, __code, __p1))
1523  __p1 = __p1->_M_next();
1524 
1525  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1526  }
1527  else
1528  return std::make_pair(end(), end());
1529  }
1530 
1531  // Find the node whose key compares equal to k in the bucket n.
1532  // Return nullptr if no node is found.
1533  template<typename _Key, typename _Value,
1534  typename _Alloc, typename _ExtractKey, typename _Equal,
1535  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1536  typename _Traits>
1537  auto
1538  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1539  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1540  _M_find_before_node(size_type __n, const key_type& __k,
1541  __hash_code __code) const
1542  -> __node_base*
1543  {
1544  __node_base* __prev_p = _M_buckets[__n];
1545  if (!__prev_p)
1546  return nullptr;
1547 
1548  for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1549  __p = __p->_M_next())
1550  {
1551  if (this->_M_equals(__k, __code, __p))
1552  return __prev_p;
1553 
1554  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1555  break;
1556  __prev_p = __p;
1557  }
1558  return nullptr;
1559  }
1560 
1561  template<typename _Key, typename _Value,
1562  typename _Alloc, typename _ExtractKey, typename _Equal,
1563  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1564  typename _Traits>
1565  void
1566  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1567  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1568  _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1569  {
1570  if (_M_buckets[__bkt])
1571  {
1572  // Bucket is not empty, we just need to insert the new node
1573  // after the bucket before begin.
1574  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1575  _M_buckets[__bkt]->_M_nxt = __node;
1576  }
1577  else
1578  {
1579  // The bucket is empty, the new node is inserted at the
1580  // beginning of the singly-linked list and the bucket will
1581  // contain _M_before_begin pointer.
1582  __node->_M_nxt = _M_before_begin._M_nxt;
1583  _M_before_begin._M_nxt = __node;
1584  if (__node->_M_nxt)
1585  // We must update former begin bucket that is pointing to
1586  // _M_before_begin.
1587  _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1588  _M_buckets[__bkt] = &_M_before_begin;
1589  }
1590  }
1591 
1592  template<typename _Key, typename _Value,
1593  typename _Alloc, typename _ExtractKey, typename _Equal,
1594  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1595  typename _Traits>
1596  void
1597  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1598  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1599  _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1600  size_type __next_bkt)
1601  {
1602  if (!__next || __next_bkt != __bkt)
1603  {
1604  // Bucket is now empty
1605  // First update next bucket if any
1606  if (__next)
1607  _M_buckets[__next_bkt] = _M_buckets[__bkt];
1608 
1609  // Second update before begin node if necessary
1610  if (&_M_before_begin == _M_buckets[__bkt])
1611  _M_before_begin._M_nxt = __next;
1612  _M_buckets[__bkt] = nullptr;
1613  }
1614  }
1615 
1616  template<typename _Key, typename _Value,
1617  typename _Alloc, typename _ExtractKey, typename _Equal,
1618  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1619  typename _Traits>
1620  auto
1621  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1622  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1623  _M_get_previous_node(size_type __bkt, __node_base* __n)
1624  -> __node_base*
1625  {
1626  __node_base* __prev_n = _M_buckets[__bkt];
1627  while (__prev_n->_M_nxt != __n)
1628  __prev_n = __prev_n->_M_nxt;
1629  return __prev_n;
1630  }
1631 
1632  template<typename _Key, typename _Value,
1633  typename _Alloc, typename _ExtractKey, typename _Equal,
1634  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1635  typename _Traits>
1636  template<typename... _Args>
1637  auto
1638  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1639  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1640  _M_emplace(std::true_type, _Args&&... __args)
1641  -> pair<iterator, bool>
1642  {
1643  // First build the node to get access to the hash code
1644  __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1645  const key_type& __k = this->_M_extract()(__node->_M_v());
1646  __hash_code __code;
1647  __try
1648  {
1649  __code = this->_M_hash_code(__k);
1650  }
1651  __catch(...)
1652  {
1653  this->_M_deallocate_node(__node);
1654  __throw_exception_again;
1655  }
1656 
1657  size_type __bkt = _M_bucket_index(__k, __code);
1658  if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1659  {
1660  // There is already an equivalent node, no insertion
1661  this->_M_deallocate_node(__node);
1662  return std::make_pair(iterator(__p), false);
1663  }
1664 
1665  // Insert the node
1666  return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1667  true);
1668  }
1669 
1670  template<typename _Key, typename _Value,
1671  typename _Alloc, typename _ExtractKey, typename _Equal,
1672  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1673  typename _Traits>
1674  template<typename... _Args>
1675  auto
1676  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1677  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1678  _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1679  -> iterator
1680  {
1681  // First build the node to get its hash code.
1682  __node_type* __node =
1683  this->_M_allocate_node(std::forward<_Args>(__args)...);
1684 
1685  __hash_code __code;
1686  __try
1687  {
1688  __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1689  }
1690  __catch(...)
1691  {
1692  this->_M_deallocate_node(__node);
1693  __throw_exception_again;
1694  }
1695 
1696  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1697  }
1698 
1699  template<typename _Key, typename _Value,
1700  typename _Alloc, typename _ExtractKey, typename _Equal,
1701  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1702  typename _Traits>
1703  auto
1704  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1705  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1706  _M_insert_unique_node(size_type __bkt, __hash_code __code,
1707  __node_type* __node)
1708  -> iterator
1709  {
1710  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1711  std::pair<bool, std::size_t> __do_rehash
1712  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1713 
1714  __try
1715  {
1716  if (__do_rehash.first)
1717  {
1718  _M_rehash(__do_rehash.second, __saved_state);
1719  __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1720  }
1721 
1722  this->_M_store_code(__node, __code);
1723 
1724  // Always insert at the beginning of the bucket.
1725  _M_insert_bucket_begin(__bkt, __node);
1726  ++_M_element_count;
1727  return iterator(__node);
1728  }
1729  __catch(...)
1730  {
1731  this->_M_deallocate_node(__node);
1732  __throw_exception_again;
1733  }
1734  }
1735 
1736  // Insert node, in bucket bkt if no rehash (assumes no element with its key
1737  // already present). Take ownership of the node, deallocate it on exception.
1738  template<typename _Key, typename _Value,
1739  typename _Alloc, typename _ExtractKey, typename _Equal,
1740  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1741  typename _Traits>
1742  auto
1743  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1744  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1745  _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1746  __node_type* __node)
1747  -> iterator
1748  {
1749  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1750  std::pair<bool, std::size_t> __do_rehash
1751  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1752 
1753  __try
1754  {
1755  if (__do_rehash.first)
1756  _M_rehash(__do_rehash.second, __saved_state);
1757 
1758  this->_M_store_code(__node, __code);
1759  const key_type& __k = this->_M_extract()(__node->_M_v());
1760  size_type __bkt = _M_bucket_index(__k, __code);
1761 
1762  // Find the node before an equivalent one or use hint if it exists and
1763  // if it is equivalent.
1764  __node_base* __prev
1765  = __builtin_expect(__hint != nullptr, false)
1766  && this->_M_equals(__k, __code, __hint)
1767  ? __hint
1768  : _M_find_before_node(__bkt, __k, __code);
1769  if (__prev)
1770  {
1771  // Insert after the node before the equivalent one.
1772  __node->_M_nxt = __prev->_M_nxt;
1773  __prev->_M_nxt = __node;
1774  if (__builtin_expect(__prev == __hint, false))
1775  // hint might be the last bucket node, in this case we need to
1776  // update next bucket.
1777  if (__node->_M_nxt
1778  && !this->_M_equals(__k, __code, __node->_M_next()))
1779  {
1780  size_type __next_bkt = _M_bucket_index(__node->_M_next());
1781  if (__next_bkt != __bkt)
1782  _M_buckets[__next_bkt] = __node;
1783  }
1784  }
1785  else
1786  // The inserted node has no equivalent in the
1787  // hashtable. We must insert the new node at the
1788  // beginning of the bucket to preserve equivalent
1789  // elements' relative positions.
1790  _M_insert_bucket_begin(__bkt, __node);
1791  ++_M_element_count;
1792  return iterator(__node);
1793  }
1794  __catch(...)
1795  {
1796  this->_M_deallocate_node(__node);
1797  __throw_exception_again;
1798  }
1799  }
1800 
1801  // Insert v if no element with its key is already present.
1802  template<typename _Key, typename _Value,
1803  typename _Alloc, typename _ExtractKey, typename _Equal,
1804  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1805  typename _Traits>
1806  template<typename _Arg, typename _NodeGenerator>
1807  auto
1808  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1809  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1810  _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1811  -> pair<iterator, bool>
1812  {
1813  const key_type& __k = this->_M_extract()(__v);
1814  __hash_code __code = this->_M_hash_code(__k);
1815  size_type __bkt = _M_bucket_index(__k, __code);
1816 
1817  __node_type* __n = _M_find_node(__bkt, __k, __code);
1818  if (__n)
1819  return std::make_pair(iterator(__n), false);
1820 
1821  __n = __node_gen(std::forward<_Arg>(__v));
1822  return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1823  }
1824 
1825  // Insert v unconditionally.
1826  template<typename _Key, typename _Value,
1827  typename _Alloc, typename _ExtractKey, typename _Equal,
1828  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1829  typename _Traits>
1830  template<typename _Arg, typename _NodeGenerator>
1831  auto
1832  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1833  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1834  _M_insert(const_iterator __hint, _Arg&& __v,
1835  const _NodeGenerator& __node_gen, std::false_type)
1836  -> iterator
1837  {
1838  // First compute the hash code so that we don't do anything if it
1839  // throws.
1840  __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1841 
1842  // Second allocate new node so that we don't rehash if it throws.
1843  __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1844 
1845  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1846  }
1847 
1848  template<typename _Key, typename _Value,
1849  typename _Alloc, typename _ExtractKey, typename _Equal,
1850  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1851  typename _Traits>
1852  auto
1853  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1854  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1855  erase(const_iterator __it)
1856  -> iterator
1857  {
1858  __node_type* __n = __it._M_cur;
1859  std::size_t __bkt = _M_bucket_index(__n);
1860 
1861  // Look for previous node to unlink it from the erased one, this
1862  // is why we need buckets to contain the before begin to make
1863  // this search fast.
1864  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1865  return _M_erase(__bkt, __prev_n, __n);
1866  }
1867 
1868  template<typename _Key, typename _Value,
1869  typename _Alloc, typename _ExtractKey, typename _Equal,
1870  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1871  typename _Traits>
1872  auto
1873  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1874  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1875  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1876  -> iterator
1877  {
1878  if (__prev_n == _M_buckets[__bkt])
1879  _M_remove_bucket_begin(__bkt, __n->_M_next(),
1880  __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1881  else if (__n->_M_nxt)
1882  {
1883  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1884  if (__next_bkt != __bkt)
1885  _M_buckets[__next_bkt] = __prev_n;
1886  }
1887 
1888  __prev_n->_M_nxt = __n->_M_nxt;
1889  iterator __result(__n->_M_next());
1890  this->_M_deallocate_node(__n);
1891  --_M_element_count;
1892 
1893  return __result;
1894  }
1895 
1896  template<typename _Key, typename _Value,
1897  typename _Alloc, typename _ExtractKey, typename _Equal,
1898  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1899  typename _Traits>
1900  auto
1901  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1902  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1903  _M_erase(std::true_type, const key_type& __k)
1904  -> size_type
1905  {
1906  __hash_code __code = this->_M_hash_code(__k);
1907  std::size_t __bkt = _M_bucket_index(__k, __code);
1908 
1909  // Look for the node before the first matching node.
1910  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1911  if (!__prev_n)
1912  return 0;
1913 
1914  // We found a matching node, erase it.
1915  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1916  _M_erase(__bkt, __prev_n, __n);
1917  return 1;
1918  }
1919 
1920  template<typename _Key, typename _Value,
1921  typename _Alloc, typename _ExtractKey, typename _Equal,
1922  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1923  typename _Traits>
1924  auto
1925  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1926  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1927  _M_erase(std::false_type, const key_type& __k)
1928  -> size_type
1929  {
1930  __hash_code __code = this->_M_hash_code(__k);
1931  std::size_t __bkt = _M_bucket_index(__k, __code);
1932 
1933  // Look for the node before the first matching node.
1934  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1935  if (!__prev_n)
1936  return 0;
1937 
1938  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1939  // 526. Is it undefined if a function in the standard changes
1940  // in parameters?
1941  // We use one loop to find all matching nodes and another to deallocate
1942  // them so that the key stays valid during the first loop. It might be
1943  // invalidated indirectly when destroying nodes.
1944  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1945  __node_type* __n_last = __n;
1946  std::size_t __n_last_bkt = __bkt;
1947  do
1948  {
1949  __n_last = __n_last->_M_next();
1950  if (!__n_last)
1951  break;
1952  __n_last_bkt = _M_bucket_index(__n_last);
1953  }
1954  while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1955 
1956  // Deallocate nodes.
1957  size_type __result = 0;
1958  do
1959  {
1960  __node_type* __p = __n->_M_next();
1961  this->_M_deallocate_node(__n);
1962  __n = __p;
1963  ++__result;
1964  --_M_element_count;
1965  }
1966  while (__n != __n_last);
1967 
1968  if (__prev_n == _M_buckets[__bkt])
1969  _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1970  else if (__n_last && __n_last_bkt != __bkt)
1971  _M_buckets[__n_last_bkt] = __prev_n;
1972  __prev_n->_M_nxt = __n_last;
1973  return __result;
1974  }
1975 
1976  template<typename _Key, typename _Value,
1977  typename _Alloc, typename _ExtractKey, typename _Equal,
1978  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1979  typename _Traits>
1980  auto
1981  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1982  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1983  erase(const_iterator __first, const_iterator __last)
1984  -> iterator
1985  {
1986  __node_type* __n = __first._M_cur;
1987  __node_type* __last_n = __last._M_cur;
1988  if (__n == __last_n)
1989  return iterator(__n);
1990 
1991  std::size_t __bkt = _M_bucket_index(__n);
1992 
1993  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1994  bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1995  std::size_t __n_bkt = __bkt;
1996  for (;;)
1997  {
1998  do
1999  {
2000  __node_type* __tmp = __n;
2001  __n = __n->_M_next();
2002  this->_M_deallocate_node(__tmp);
2003  --_M_element_count;
2004  if (!__n)
2005  break;
2006  __n_bkt = _M_bucket_index(__n);
2007  }
2008  while (__n != __last_n && __n_bkt == __bkt);
2009  if (__is_bucket_begin)
2010  _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2011  if (__n == __last_n)
2012  break;
2013  __is_bucket_begin = true;
2014  __bkt = __n_bkt;
2015  }
2016 
2017  if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2018  _M_buckets[__n_bkt] = __prev_n;
2019  __prev_n->_M_nxt = __n;
2020  return iterator(__n);
2021  }
2022 
2023  template<typename _Key, typename _Value,
2024  typename _Alloc, typename _ExtractKey, typename _Equal,
2025  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2026  typename _Traits>
2027  void
2028  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2029  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2030  clear() noexcept
2031  {
2032  this->_M_deallocate_nodes(_M_begin());
2033  __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2034  _M_element_count = 0;
2035  _M_before_begin._M_nxt = nullptr;
2036  }
2037 
2038  template<typename _Key, typename _Value,
2039  typename _Alloc, typename _ExtractKey, typename _Equal,
2040  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2041  typename _Traits>
2042  void
2043  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2044  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2045  rehash(size_type __n)
2046  {
2047  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2048  std::size_t __buckets
2049  = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2050  __n);
2051  __buckets = _M_rehash_policy._M_next_bkt(__buckets);
2052 
2053  if (__buckets != _M_bucket_count)
2054  _M_rehash(__buckets, __saved_state);
2055  else
2056  // No rehash, restore previous state to keep a consistent state.
2057  _M_rehash_policy._M_reset(__saved_state);
2058  }
2059 
2060  template<typename _Key, typename _Value,
2061  typename _Alloc, typename _ExtractKey, typename _Equal,
2062  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2063  typename _Traits>
2064  void
2065  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2066  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2067  _M_rehash(size_type __n, const __rehash_state& __state)
2068  {
2069  __try
2070  {
2071  _M_rehash_aux(__n, __unique_keys());
2072  }
2073  __catch(...)
2074  {
2075  // A failure here means that buckets allocation failed. We only
2076  // have to restore hash policy previous state.
2077  _M_rehash_policy._M_reset(__state);
2078  __throw_exception_again;
2079  }
2080  }
2081 
2082  // Rehash when there is no equivalent elements.
2083  template<typename _Key, typename _Value,
2084  typename _Alloc, typename _ExtractKey, typename _Equal,
2085  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2086  typename _Traits>
2087  void
2088  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2089  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2090  _M_rehash_aux(size_type __n, std::true_type)
2091  {
2092  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2093  __node_type* __p = _M_begin();
2094  _M_before_begin._M_nxt = nullptr;
2095  std::size_t __bbegin_bkt = 0;
2096  while (__p)
2097  {
2098  __node_type* __next = __p->_M_next();
2099  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2100  if (!__new_buckets[__bkt])
2101  {
2102  __p->_M_nxt = _M_before_begin._M_nxt;
2103  _M_before_begin._M_nxt = __p;
2104  __new_buckets[__bkt] = &_M_before_begin;
2105  if (__p->_M_nxt)
2106  __new_buckets[__bbegin_bkt] = __p;
2107  __bbegin_bkt = __bkt;
2108  }
2109  else
2110  {
2111  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2112  __new_buckets[__bkt]->_M_nxt = __p;
2113  }
2114  __p = __next;
2115  }
2116 
2117  _M_deallocate_buckets();
2118  _M_bucket_count = __n;
2119  _M_buckets = __new_buckets;
2120  }
2121 
2122  // Rehash when there can be equivalent elements, preserve their relative
2123  // order.
2124  template<typename _Key, typename _Value,
2125  typename _Alloc, typename _ExtractKey, typename _Equal,
2126  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2127  typename _Traits>
2128  void
2129  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2130  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2131  _M_rehash_aux(size_type __n, std::false_type)
2132  {
2133  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2134 
2135  __node_type* __p = _M_begin();
2136  _M_before_begin._M_nxt = nullptr;
2137  std::size_t __bbegin_bkt = 0;
2138  std::size_t __prev_bkt = 0;
2139  __node_type* __prev_p = nullptr;
2140  bool __check_bucket = false;
2141 
2142  while (__p)
2143  {
2144  __node_type* __next = __p->_M_next();
2145  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2146 
2147  if (__prev_p && __prev_bkt == __bkt)
2148  {
2149  // Previous insert was already in this bucket, we insert after
2150  // the previously inserted one to preserve equivalent elements
2151  // relative order.
2152  __p->_M_nxt = __prev_p->_M_nxt;
2153  __prev_p->_M_nxt = __p;
2154 
2155  // Inserting after a node in a bucket require to check that we
2156  // haven't change the bucket last node, in this case next
2157  // bucket containing its before begin node must be updated. We
2158  // schedule a check as soon as we move out of the sequence of
2159  // equivalent nodes to limit the number of checks.
2160  __check_bucket = true;
2161  }
2162  else
2163  {
2164  if (__check_bucket)
2165  {
2166  // Check if we shall update the next bucket because of
2167  // insertions into __prev_bkt bucket.
2168  if (__prev_p->_M_nxt)
2169  {
2170  std::size_t __next_bkt
2171  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2172  __n);
2173  if (__next_bkt != __prev_bkt)
2174  __new_buckets[__next_bkt] = __prev_p;
2175  }
2176  __check_bucket = false;
2177  }
2178 
2179  if (!__new_buckets[__bkt])
2180  {
2181  __p->_M_nxt = _M_before_begin._M_nxt;
2182  _M_before_begin._M_nxt = __p;
2183  __new_buckets[__bkt] = &_M_before_begin;
2184  if (__p->_M_nxt)
2185  __new_buckets[__bbegin_bkt] = __p;
2186  __bbegin_bkt = __bkt;
2187  }
2188  else
2189  {
2190  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2191  __new_buckets[__bkt]->_M_nxt = __p;
2192  }
2193  }
2194  __prev_p = __p;
2195  __prev_bkt = __bkt;
2196  __p = __next;
2197  }
2198 
2199  if (__check_bucket && __prev_p->_M_nxt)
2200  {
2201  std::size_t __next_bkt
2202  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2203  if (__next_bkt != __prev_bkt)
2204  __new_buckets[__next_bkt] = __prev_p;
2205  }
2206 
2207  _M_deallocate_buckets();
2208  _M_bucket_count = __n;
2209  _M_buckets = __new_buckets;
2210  }
2211 
2212 #if __cplusplus > 201402L
2213  template<typename, typename, typename> class _Hash_merge_helper { };
2214 #endif // C++17
2215 
2216 _GLIBCXX_END_NAMESPACE_VERSION
2217 } // namespace std
2218 
2219 #endif // _HASHTABLE_H
constexpr pair< typename __decay_and_strip< _T1 >::__type, typename __decay_and_strip< _T2 >::__type > make_pair(_T1 &&__x, _T2 &&__y)
A convenience wrapper for creating a pair from two objects.
Definition: stl_pair.h:524
constexpr conditional< __move_if_noexcept_cond< _Tp >::value, const _Tp &, _Tp && >::type move_if_noexcept(_Tp &__x) noexcept
Conditionally convert a value to an rvalue.
Definition: move.h:118
_GLIBCXX14_CONSTEXPR const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:219
ISO C++ entities toplevel namespace is std.
_Tp exchange(_Tp &__obj, _Up &&__new_val)
Assign __new_val to __obj and return its previous value.
Definition: utility:277
constexpr const _Tp * begin(initializer_list< _Tp > __ils) noexcept
Return an iterator pointing to the first element of the initializer_list.
constexpr const _Tp * end(initializer_list< _Tp > __ils) noexcept
Return an iterator pointing to one past the last element of the initializer_list.
constexpr auto cend(const _Container &__cont) noexcept(noexcept(std::end(__cont))) -> decltype(std::end(__cont))
Return an iterator pointing to one past the last element of the const container.
Definition: range_access.h:127
_GLIBCXX17_CONSTEXPR iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
constexpr auto cbegin(const _Container &__cont) noexcept(noexcept(std::begin(__cont))) -> decltype(std::begin(__cont))
Return an iterator pointing to the first element of the const container.
Definition: range_access.h:116
initializer_list
integral_constant
Definition: type_traits:70
Uniform interface to all allocator types.
Node iterators, used to iterate through all the hashtable.
Node const_iterators, used to iterate through all the hashtable.
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:210
_T1 first
second_type is the second bound type
Definition: stl_pair.h:214
_T2 second
first is a copy of the first object
Definition: stl_pair.h:215
Uniform interface to C++98 and C++11 allocators.