ReesAlgebra : Index
-
analyticSpread -- Compute the analytic spread of a module or ideal
-
analyticSpread(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
analyticSpread(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
analyticSpread(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
analyticSpread(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
analyticSpread(..., Strategy => ...) -- Choose a strategy for the saturation step
-
analyticSpread(Ideal) -- Compute the analytic spread of a module or ideal
-
analyticSpread(Ideal,RingElement) -- Compute the analytic spread of a module or ideal
-
analyticSpread(Module) -- Compute the analytic spread of a module or ideal
-
analyticSpread(Module,RingElement) -- Compute the analytic spread of a module or ideal
-
distinguished -- Compute the distinguished subvarieties of a pullback, intersection or cone
-
distinguished(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
distinguished(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
distinguished(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
distinguished(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
distinguished(..., Strategy => ...) -- Choose a strategy for the saturation step
-
distinguished(..., Variable => ...) -- Choose name for variables in the created ring
-
distinguished(Ideal) -- Compute the distinguished subvarieties of a pullback, intersection or cone
-
distinguished(Ideal,Ideal) -- Compute the distinguished subvarieties of a pullback, intersection or cone
-
distinguished(RingMap,Ideal) -- Compute the distinguished subvarieties of a pullback, intersection or cone
-
expectedReesIdeal -- symmetric algebra ideal plus jacobian dual
-
expectedReesIdeal(Ideal) -- symmetric algebra ideal plus jacobian dual
-
expectedReesIdeal(Module) -- symmetric algebra ideal plus jacobian dual
-
intersectInP -- Compute distinguished varieties for an intersection in A^n or P^n
-
intersectInP(..., BasisElementLimit => ...) -- Option for intersectInP
-
intersectInP(..., DegreeLimit => ...) -- Option for intersectInP
-
intersectInP(..., MinimalGenerators => ...) -- Option for intersectInP
-
intersectInP(..., PairLimit => ...) -- Option for intersectInP
-
intersectInP(..., Strategy => ...) -- Option for intersectInP
-
intersectInP(..., Variable => ...) -- Option for intersectInP
-
intersectInP(Ideal,Ideal) -- Compute distinguished varieties for an intersection in A^n or P^n
-
isLinearType -- Determine whether module has linear type
-
isLinearType(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
isLinearType(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
isLinearType(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
isLinearType(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
isLinearType(..., Strategy => ...) -- Choose a strategy for the saturation step
-
isLinearType(Ideal) -- Determine whether module has linear type
-
isLinearType(Ideal,RingElement) -- Determine whether module has linear type
-
isLinearType(Module) -- Determine whether module has linear type
-
isLinearType(Module,RingElement) -- Determine whether module has linear type
-
isReduction -- Determine whether an ideal is a reduction
-
isReduction(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
isReduction(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
isReduction(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
isReduction(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
isReduction(..., Strategy => ...) -- Choose a strategy for the saturation step
-
isReduction(..., Variable => ...) -- Choose name for variables in the created ring
-
isReduction(Ideal,Ideal) -- Determine whether an ideal is a reduction
-
isReduction(Ideal,Ideal,RingElement) -- Determine whether an ideal is a reduction
-
isReduction(Module,Module) -- Determine whether an ideal is a reduction
-
isReduction(Module,Module,RingElement) -- Determine whether an ideal is a reduction
-
Jacobian -- Choose whether to use the Jacobian dual in the computation
-
jacobianDual -- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
-
jacobianDual(..., Variable => ...) -- Choose name for variables in the created ring
-
jacobianDual(Matrix) -- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
-
jacobianDual(Matrix,Matrix,Matrix) -- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
-
minimalReduction -- Find a minimal reduction of an ideal
-
minimalReduction(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
minimalReduction(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
minimalReduction(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
minimalReduction(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
minimalReduction(..., Strategy => ...) -- Choose a strategy for the saturation step
-
minimalReduction(..., Tries => ...) -- Set the number of random tries to compute a minimal reduction
-
minimalReduction(Ideal) -- Find a minimal reduction of an ideal
-
multiplicity -- Compute the Hilbert-Samuel multiplicity of an ideal
-
multiplicity(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
multiplicity(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
multiplicity(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
multiplicity(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
multiplicity(..., Strategy => ...) -- Choose a strategy for the saturation step
-
multiplicity(..., Variable => ...) -- Option for intersectInP
-
multiplicity(Ideal) -- Compute the Hilbert-Samuel multiplicity of an ideal
-
multiplicity(Ideal,RingElement) -- Compute the Hilbert-Samuel multiplicity of an ideal
-
normalCone -- The normal cone of a subscheme
-
normalCone(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
normalCone(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
normalCone(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
normalCone(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
normalCone(..., Strategy => ...) -- Choose a strategy for the saturation step
-
normalCone(..., Variable => ...) -- Choose name for variables in the created ring
-
normalCone(Ideal) -- The normal cone of a subscheme
-
normalCone(Ideal,RingElement) -- The normal cone of a subscheme
-
PlaneCurveSingularities -- Using the Rees Algebra to resolve plane curve singularities
-
reductionNumber -- Reduction number of one ideal with respect to another
-
reductionNumber(Ideal,Ideal) -- Reduction number of one ideal with respect to another
-
ReesAlgebra -- Compute Rees algebras and their invariants
-
reesAlgebra -- Compute the defining ideal of the Rees Algebra
-
reesAlgebra(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
reesAlgebra(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
reesAlgebra(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
reesAlgebra(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
reesAlgebra(..., Strategy => ...) -- Choose a strategy for the saturation step
-
reesAlgebra(..., Variable => ...) -- Choose name for variables in the created ring
-
reesAlgebra(Ideal) -- Compute the defining ideal of the Rees Algebra
-
reesAlgebra(Ideal,RingElement) -- Compute the defining ideal of the Rees Algebra
-
reesAlgebra(Module) -- Compute the defining ideal of the Rees Algebra
-
reesAlgebra(Module,RingElement) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
reesIdeal(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
reesIdeal(..., Jacobian => ...) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
reesIdeal(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
reesIdeal(..., Strategy => ...) -- Choose a strategy for the saturation step
-
reesIdeal(..., Trim => ...) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(..., Variable => ...) -- Choose name for variables in the created ring
-
reesIdeal(Ideal) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(Ideal,RingElement) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(Module) -- Compute the defining ideal of the Rees Algebra
-
reesIdeal(Module,RingElement) -- Compute the defining ideal of the Rees Algebra
-
specialFiber -- Special fiber of a blowup
-
specialFiber(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
specialFiber(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
specialFiber(..., Jacobian => ...) -- Special fiber of a blowup
-
specialFiber(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
specialFiber(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
specialFiber(..., Strategy => ...) -- Choose a strategy for the saturation step
-
specialFiber(..., Trim => ...) -- Special fiber of a blowup
-
specialFiber(..., Variable => ...) -- Choose name for variables in the created ring
-
specialFiber(Ideal) -- Special fiber of a blowup
-
specialFiber(Ideal,RingElement) -- Special fiber of a blowup
-
specialFiber(Module) -- Special fiber of a blowup
-
specialFiber(Module,RingElement) -- Special fiber of a blowup
-
specialFiberIdeal -- Special fiber of a blowup
-
specialFiberIdeal(..., BasisElementLimit => ...) -- Bound the number of Groebner basis elements to compute in the saturation step
-
specialFiberIdeal(..., DegreeLimit => ...) -- Bound the degrees considered in the saturation step. Defaults to infinity
-
specialFiberIdeal(..., Jacobian => ...) -- Special fiber of a blowup
-
specialFiberIdeal(..., MinimalGenerators => ...) -- Whether the saturation step returns minimal generators
-
specialFiberIdeal(..., PairLimit => ...) -- Bound the number of s-pairs considered in the saturation step
-
specialFiberIdeal(..., Strategy => ...) -- Choose a strategy for the saturation step
-
specialFiberIdeal(..., Trim => ...) -- Special fiber of a blowup
-
specialFiberIdeal(..., Variable => ...) -- Choose name for variables in the created ring
-
specialFiberIdeal(Ideal) -- Special fiber of a blowup
-
specialFiberIdeal(Ideal,RingElement) -- Special fiber of a blowup
-
specialFiberIdeal(Module) -- Special fiber of a blowup
-
specialFiberIdeal(Module,RingElement) -- Special fiber of a blowup
-
symmetricAlgebraIdeal -- Ideal of the symmetric algebra of an ideal or module
-
symmetricAlgebraIdeal(..., VariableBaseName => ...) -- Ideal of the symmetric algebra of an ideal or module
-
symmetricAlgebraIdeal(Ideal) -- Ideal of the symmetric algebra of an ideal or module
-
symmetricAlgebraIdeal(Module) -- Ideal of the symmetric algebra of an ideal or module
-
symmetricKernel -- Compute the Rees ring of the image of a matrix
-
symmetricKernel(..., Variable => ...) -- Choose name for variables in the created ring
-
symmetricKernel(Matrix) -- Compute the Rees ring of the image of a matrix
-
Tries -- Set the number of random tries to compute a minimal reduction
-
Trim -- Choose whether to trim (or find minimal generators) for the ideal or module.
-
versalEmbedding -- Compute a versal embedding
-
versalEmbedding(Ideal) -- Compute a versal embedding
-
versalEmbedding(Module) -- Compute a versal embedding
-
whichGm -- Largest Gm satisfied by an ideal
-
whichGm(Ideal) -- Largest Gm satisfied by an ideal