On M0,n, the divisor kappa may be defined by K + Δ, where K is the canonical divisor, and Δ is the sum of the boundary classes Bi. A fun fact is that kappa . FI1,I2,I3,I4 =1 for every F curve.
i1 : kappaDivisorM0nbar(14) 11 20 27 32 35 36 o1 = --*B + --*B + --*B + --*B + --*B + --*B 13 2 13 3 13 4 13 5 13 6 13 7 o1 : S_14-symmetric divisor on M-0-14-bar |