We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00190265, .00102833) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00564044, .0427976) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00614241, .0147596}, {.00580573, .00505556}, {.0220323, .00803576}, ------------------------------------------------------------------------ {.00608303, .0119052}, {.00639985, .0161312}, {.00730706, .0153796}, ------------------------------------------------------------------------ {.00632635, .00995767}, {.00716037, .0091509}, {.0189598, .0064597}, ------------------------------------------------------------------------ {.00678592, .0096539}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .00930028900000002 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0106489066 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.