We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00637854 seconds elapsed -- 0.0284421 seconds elapsed -- 0.000201298 seconds elapsed -- 0.000142677 seconds elapsed -- 0.000144302 seconds elapsed -- 0.000126497 seconds elapsed -- 0.000127969 seconds elapsed -- 0.000129823 seconds elapsed -- 0.000149161 seconds elapsed -- 0.000159779 seconds elapsed -- 0.000128941 seconds elapsed -- 0.000134492 seconds elapsed -- 0.00012801 seconds elapsed -- 0.000131536 seconds elapsed -- 0.0001225 seconds elapsed -- 0.000141555 seconds elapsed -- 0.000140683 seconds elapsed -- 0.000147758 seconds elapsed -- 0.00015473 seconds elapsed -- 0.000131547 seconds elapsed -- 0.000141666 seconds elapsed -- 0.000136675 seconds elapsed -- 0.000128741 seconds elapsed -- 0.000124453 seconds elapsed -- 0.00011742 seconds elapsed -- 0.000121428 seconds elapsed -- 0.000200085 seconds elapsed -- 0.000123721 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.