We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00489021 seconds elapsed -- 0.011378 seconds elapsed -- 0.000182462 seconds elapsed -- 0.000112201 seconds elapsed -- 0.00010301 seconds elapsed -- 0.000112301 seconds elapsed -- 0.00010243 seconds elapsed -- 0.000106741 seconds elapsed -- 0.000132701 seconds elapsed -- 0.000134301 seconds elapsed -- 0.000117941 seconds elapsed -- 0.000107881 seconds elapsed -- 0.000104801 seconds elapsed -- 0.000114171 seconds elapsed -- 0.000104091 seconds elapsed -- 0.000101471 seconds elapsed -- 0.000113131 seconds elapsed -- 0.000109401 seconds elapsed -- 0.000113021 seconds elapsed -- 0.000112091 seconds elapsed -- 0.000121772 seconds elapsed -- 0.000114061 seconds elapsed -- 0.000116272 seconds elapsed -- 0.00010402 seconds elapsed -- 0.000106152 seconds elapsed -- 0.000103212 seconds elapsed -- 0.00010691 seconds elapsed -- 0.000098571 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.