This function converts commutative rings and quotients of exterior algebras (i.e. quotients of PolynomialRing) to a ring of type FreeAlgebraQuotient.
i1 : R = QQ[a,b,c,d, SkewCommutative=>{2,3}] o1 = R o1 : PolynomialRing, 2 skew commutative variables |
i2 : I = ideal(a*d-b*c) o2 = ideal(- b*c + a*d) o2 : Ideal of R |
i3 : S = R/I o3 = S o3 : QuotientRing |
i4 : S' = toFreeAlgebraQuotient(S) o4 = S' o4 : FreeAlgebraQuotient |
i5 : ideal S' o5 = ideal (a*b - b*a, a*c - c*a, b*c - c*b, a*d - d*a, b*d - d*b, c*d + d*c, ------------------------------------------------------------------------ 2 2 c , d , - c*b + d*a) o5 : Ideal of QQ <|a, b, c, d|> |
The object toFreeAlgebraQuotient is a method function.