We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00621201 seconds elapsed -- 0.0142217 seconds elapsed -- 0.000190327 seconds elapsed -- 0.000139732 seconds elapsed -- 0.000130765 seconds elapsed -- 0.000134391 seconds elapsed -- 0.000130104 seconds elapsed -- 0.000134312 seconds elapsed -- 0.000155651 seconds elapsed -- 0.00016539 seconds elapsed -- 0.000150422 seconds elapsed -- 0.000143799 seconds elapsed -- 0.000132419 seconds elapsed -- 0.000136385 seconds elapsed -- 0.00013337 seconds elapsed -- 0.000129813 seconds elapsed -- 0.000143799 seconds elapsed -- 0.000130404 seconds elapsed -- 0.000150502 seconds elapsed -- 0.000148037 seconds elapsed -- 0.000156553 seconds elapsed -- 0.000157475 seconds elapsed -- 0.000137777 seconds elapsed -- 0.000126116 seconds elapsed -- 0.000132859 seconds elapsed -- 0.000137988 seconds elapsed -- 0.000129473 seconds elapsed -- 0.000128811 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.