We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00469423 seconds elapsed -- 0.0116287 seconds elapsed -- 0.000189309 seconds elapsed -- 0.00011599 seconds elapsed -- 0.000106449 seconds elapsed -- 0.000099451 seconds elapsed -- 0.000100811 seconds elapsed -- 0.00010176 seconds elapsed -- 0.000123221 seconds elapsed -- 0.00013308 seconds elapsed -- 0.000112061 seconds elapsed -- 0.00011361 seconds elapsed -- 0.00010564 seconds elapsed -- 0.00012777 seconds elapsed -- 0.00010434 seconds elapsed -- 0.0001031 seconds elapsed -- 0.000114131 seconds elapsed -- 0.000101361 seconds elapsed -- 0.000116741 seconds elapsed -- 0.000109469 seconds elapsed -- 0.00013205 seconds elapsed -- 0.00013002 seconds elapsed -- 0.00011257 seconds elapsed -- 0.00010292 seconds elapsed -- 0.00010886 seconds elapsed -- 0.00014464 seconds elapsed -- 0.000117201 seconds elapsed -- 0.000104511 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.