next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.00005995 seconds elapsed
 -- 0.000635873 seconds elapsed
 -- 0.000151211 seconds elapsed
 -- 0.000057711 seconds elapsed
 -- 0.000579593 seconds elapsed
 -- 0.000148281 seconds elapsed
 -- 0.00004951 seconds elapsed
 -- 0.00004621 seconds elapsed
 -- 0.000294722 seconds elapsed
 -- 0.00005568 seconds elapsed
 -- 0.000537943 seconds elapsed
 -- 0.00013481 seconds elapsed
 -- 0.00005522 seconds elapsed
 -- 0.000513004 seconds elapsed
 -- 0.00013486 seconds elapsed
 -- 0.00005361 seconds elapsed
 -- 0.000489443 seconds elapsed
 -- 0.00012995 seconds elapsed
 -- 0.00005558 seconds elapsed
 -- 0.000554613 seconds elapsed
 -- 0.00013512 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.0000535 seconds elapsed
 -- 0.000589713 seconds elapsed
 -- 0.000142972 seconds elapsed
 -- 0.00005514 seconds elapsed
 -- 0.000537713 seconds elapsed
 -- 0.00018473 seconds elapsed
 -- 0.00005379 seconds elapsed
 -- 0.000497722 seconds elapsed
 -- 0.000132421 seconds elapsed
 -- 0.000051911 seconds elapsed
 -- 0.000491092 seconds elapsed
 -- 0.00012877 seconds elapsed
 -- 0.00005242 seconds elapsed
 -- 0.000511243 seconds elapsed
 -- 0.00013278 seconds elapsed
 -- 0.00005116 seconds elapsed
 -- 0.000528053 seconds elapsed
 -- 0.000140189 seconds elapsed
 -- 0.00005561 seconds elapsed
 -- 0.000621043 seconds elapsed
 -- 0.000136221 seconds elapsed
 -- 0.00005202 seconds elapsed
 -- 0.000548513 seconds elapsed
 -- 0.00013152 seconds elapsed
 -- 0.0000689 seconds elapsed
 -- 0.000496543 seconds elapsed
 -- 0.000131911 seconds elapsed
 -- 0.00005226 seconds elapsed
 -- 0.000480294 seconds elapsed
 -- 0.000132631 seconds elapsed
 -- 0.000052301 seconds elapsed
 -- 0.000474772 seconds elapsed
 -- 0.000129731 seconds elapsed
 -- 0.000051609 seconds elapsed
 -- 0.000516523 seconds elapsed
 -- 0.00013246 seconds elapsed
 -- 0.00005759 seconds elapsed
 -- 0.000781024 seconds elapsed
 -- 0.000229922 seconds elapsed
 -- 0.000055111 seconds elapsed
 -- 0.000745445 seconds elapsed
 -- 0.000395932 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.