Descriptor for a convolution forward propagation primitive.
More...
#include <dnnl.hpp>
|
| desc (prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc &bias_desc, const memory::desc &dst_desc, const memory::dims &strides, const memory::dims &padding_l, const memory::dims &padding_r) |
| Constructs a descriptor for a convolution forward propagation primitive with bias. More...
|
|
| desc (prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc &dst_desc, const memory::dims &strides, const memory::dims &padding_l, const memory::dims &padding_r) |
| Constructs a descriptor for a convolution forward propagation primitive without bias. More...
|
|
| desc (prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc &bias_desc, const memory::desc &dst_desc, const memory::dims &strides, const memory::dims &dilates, const memory::dims &padding_l, const memory::dims &padding_r) |
| Constructs a descriptor for a dilated convolution forward propagation primitive with bias. More...
|
|
| desc (prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc &dst_desc, const memory::dims &strides, const memory::dims &dilates, const memory::dims &padding_l, const memory::dims &padding_r) |
| Constructs a descriptor for a dilated convolution forward propagation primitive without bias. More...
|
|
◆ desc() [1/4]
Constructs a descriptor for a convolution forward propagation primitive with bias.
- Note
- All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value of
format_tag
.
Arrays strides
, padding_l
, and padding_r
contain values for spatial dimensions only and hence must have the same number of elements as there are spatial dimensions. The order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.
- Parameters
-
aprop_kind | Propagation kind. Possible values are #dnnl::prop_kind::forward_training, and #dnnl::prop_kind::forward_inference. |
aalgorithm | Convolution algorithm. Possible values are #dnnl::algorithm::convolution_direct, #dnnl::algorithm::convolution_winograd, and #dnnl::algorithm::convolution_auto. |
src_desc | Source memory descriptor. |
weights_desc | Weights memory descriptor. |
bias_desc | Bias memory descriptor. Passing zero memory descriptor disables the bias term. |
dst_desc | Destination memory descriptor. |
strides | Strides for each spatial dimension. |
padding_l | Vector of padding values for low indices for each spatial dimension ([[front,] top,] left) . |
padding_r | Vector of padding values for high indices for each spatial dimension ([[back,] bottom,] right) . |
◆ desc() [2/4]
Constructs a descriptor for a convolution forward propagation primitive without bias.
- Note
- All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value of
format_tag
.
Arrays strides
, padding_l
, and padding_r
contain values for spatial dimensions only and hence must have the same number of elements as there are spatial dimensions. The order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.
- Parameters
-
aprop_kind | Propagation kind. Possible values are #dnnl::prop_kind::forward_training, and #dnnl::prop_kind::forward_inference. |
aalgorithm | Convolution algorithm. Possible values are #dnnl::algorithm::convolution_direct, #dnnl::algorithm::convolution_winograd, and #dnnl::algorithm::convolution_auto. |
src_desc | Source memory descriptor. |
weights_desc | Weights memory descriptor. |
dst_desc | Destination memory descriptor. |
strides | Strides for each spatial dimension. |
padding_l | Vector of padding values for low indices for each spatial dimension ([[front,] top,] left) . |
padding_r | Vector of padding values for high indices for each spatial dimension ([[back,] bottom,] right) . |
◆ desc() [3/4]
Constructs a descriptor for a dilated convolution forward propagation primitive with bias.
- Note
- All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value of
format_tag
.
Arrays strides
, dilates
, padding_l
, and padding_r
contain values for spatial dimensions only and hence must have the same number of elements as there are spatial dimensions. The order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.
- Parameters
-
aprop_kind | Propagation kind. Possible values are #dnnl::prop_kind::forward_training, and #dnnl::prop_kind::forward_inference. |
aalgorithm | Convolution algorithm. Possible values are #dnnl::algorithm::convolution_direct, #dnnl::algorithm::convolution_winograd, and #dnnl::algorithm::convolution_auto. |
src_desc | Source memory descriptor. |
weights_desc | Weights memory descriptor. |
bias_desc | Bias memory descriptor. Passing zero memory descriptor disables the bias term. |
dst_desc | Destination memory descriptor. |
strides | Strides for each spatial dimension. |
dilates | Dilations for each spatial dimension. A zero value means no dilation in the corresponding dimension. |
padding_l | Vector of padding values for low indices for each spatial dimension ([[front,] top,] left) . |
padding_r | Vector of padding values for high indices for each spatial dimension ([[back,] bottom,] right) . |
◆ desc() [4/4]
Constructs a descriptor for a dilated convolution forward propagation primitive without bias.
- Note
- All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value of
format_tag
.
Arrays strides
, dilates
, padding_l
, and padding_r
contain values for spatial dimensions only and hence must have the same number of elements as there are spatial dimensions. The order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.
- Parameters
-
aprop_kind | Propagation kind. Possible values are #dnnl::prop_kind::forward_training, and #dnnl::prop_kind::forward_inference. |
aalgorithm | Convolution algorithm. Possible values are #dnnl::algorithm::convolution_direct, #dnnl::algorithm::convolution_winograd, and #dnnl::algorithm::convolution_auto. |
src_desc | Source memory descriptor. |
weights_desc | Weights memory descriptor. |
dst_desc | Destination memory descriptor. |
strides | Strides for each spatial dimension. |
dilates | Dilations for each spatial dimension. A zero value means no dilation in the corresponding dimension. |
padding_l | Vector of padding values for low indices for each spatial dimension ([[front,] top,] left) . |
padding_r | Vector of padding values for high indices for each spatial dimension ([[back,] bottom,] right) . |
The documentation for this struct was generated from the following file: