|
|
template<typename TreeType > |
TreeType::Ptr | solve (const TreeType &, math::pcg::State &, bool staggered=false) |
| Solve ∇2x = b for x, where b is a vector comprising the values of all of the active voxels in the input tree. More...
|
|
template<typename TreeType , typename Interrupter > |
TreeType::Ptr | solve (const TreeType &, math::pcg::State &, Interrupter &, bool staggered=false) |
| Solve ∇2x = b for x, where b is a vector comprising the values of all of the active voxels in the input tree. More...
|
|
template<typename TreeType , typename BoundaryOp , typename Interrupter > |
TreeType::Ptr | solveWithBoundaryConditions (const TreeType &, const BoundaryOp &, math::pcg::State &, Interrupter &, bool staggered=false) |
| Solve ∇2x = b for x with user-specified boundary conditions, where b is a vector comprising the values of all of the active voxels in the input tree or domain mask if provided. More...
|
|
template<typename PreconditionerType , typename TreeType , typename BoundaryOp , typename Interrupter > |
TreeType::Ptr | solveWithBoundaryConditionsAndPreconditioner (const TreeType &, const BoundaryOp &, math::pcg::State &, Interrupter &, bool staggered=false) |
| Solve ∇2x = b for x, where b is a vector comprising the values of all of the active voxels in the input tree. More...
|
|
template<typename PreconditionerType , typename TreeType , typename DomainTreeType , typename BoundaryOp , typename Interrupter > |
TreeType::Ptr | solveWithBoundaryConditionsAndPreconditioner (const TreeType &, const DomainTreeType &, const BoundaryOp &, math::pcg::State &, Interrupter &, bool staggered=false) |
| Solve ∇2x = b for x, where b is a vector comprising the values of all of the active voxels in the input tree. More...
|
|
template<typename VIndexTreeType > |
void | populateIndexTree (VIndexTreeType &) |
| Overwrite each active voxel in the given scalar tree with a sequential index, starting from zero. More...
|
|
template<typename TreeType > |
TreeType::template ValueConverter< VIndex >::Type::Ptr | createIndexTree (const TreeType &) |
| Iterate over the active voxels of the input tree and for each one assign its index in the iteration sequence to the corresponding voxel of an integer-valued output tree. More...
|
|
template<typename VectorValueType , typename SourceTreeType > |
math::pcg::Vector< VectorValueType >::Ptr | createVectorFromTree (const SourceTreeType &source, const typename SourceTreeType::template ValueConverter< VIndex >::Type &index) |
| Return a vector of the active voxel values of the scalar-valued source tree. More...
|
|
template<typename TreeValueType , typename VIndexTreeType , typename VectorValueType > |
VIndexTreeType::template ValueConverter< TreeValueType >::Type::Ptr | createTreeFromVector (const math::pcg::Vector< VectorValueType > &values, const VIndexTreeType &index, const TreeValueType &background) |
| Return a tree with the same active voxel topology as the index tree but whose voxel values are taken from the the given vector. More...
|
|
template<typename BoolTreeType > |
LaplacianMatrix::Ptr | createISLaplacian (const typename BoolTreeType::template ValueConverter< VIndex >::Type &vectorIndexTree, const BoolTreeType &interiorMask, bool staggered=false) |
| Generate a sparse matrix of the index-space (Δx = 1) Laplacian operator using second-order finite differences. More...
|
|
template<typename BoolTreeType , typename BoundaryOp > |
LaplacianMatrix::Ptr | createISLaplacianWithBoundaryConditions (const typename BoolTreeType::template ValueConverter< VIndex >::Type &vectorIndexTree, const BoolTreeType &interiorMask, const BoundaryOp &boundaryOp, typename math::pcg::Vector< LaplacianMatrix::ValueType > &source, bool staggered=false) |
| Generate a sparse matrix of the index-space (Δx = 1) Laplacian operator with user-specified boundary conditions using second-order finite differences. More...
|
|
Generate a sparse matrix of the index-space (Δx = 1) Laplacian operator with user-specified boundary conditions using second-order finite differences.
Each thread gets its own copy of boundaryOp, which should be a functor of the form
struct BoundaryOp {
void operator()(
const Coord& ijk,
const Coord& ijkNeighbor,
ValueType& source,
ValueType& diagonal
) const;
};
The functor is called for each of the exterior neighbors of each boundary voxel (i, j, k), and it must specify a boundary condition for (i, j, k) by modifying one or both of two provided values: an entry in the given source vector corresponding to (i, j, k) and the weighting coefficient for (i, j, k) in the Laplacian matrix.