Source code for azure.mgmt.datafactory.models.azure_databricks_linked_service

# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is
# regenerated.
# --------------------------------------------------------------------------

from .linked_service import LinkedService


[docs]class AzureDatabricksLinkedService(LinkedService): """Azure Databricks linked service. :param additional_properties: Unmatched properties from the message are deserialized this collection :type additional_properties: dict[str, object] :param connect_via: The integration runtime reference. :type connect_via: ~azure.mgmt.datafactory.models.IntegrationRuntimeReference :param description: Linked service description. :type description: str :param parameters: Parameters for linked service. :type parameters: dict[str, ~azure.mgmt.datafactory.models.ParameterSpecification] :param annotations: List of tags that can be used for describing the Dataset. :type annotations: list[object] :param type: Constant filled by server. :type type: str :param domain: <REGION>.azuredatabricks.net, domain name of your Databricks deployment. Type: string (or Expression with resultType string). :type domain: object :param access_token: Access token for databricks REST API. Refer to https://docs.azuredatabricks.net/api/latest/authentication.html. Type: string (or Expression with resultType string). :type access_token: ~azure.mgmt.datafactory.models.SecretBase :param existing_cluster_id: The id of an existing cluster that will be used for all runs of this job. Type: string (or Expression with resultType string). :type existing_cluster_id: object :param new_cluster_version: The Spark version of new cluster. Type: string (or Expression with resultType string). :type new_cluster_version: object :param new_cluster_num_of_worker: Number of worker nodes that new cluster should have. A string formatted Int32, like '1' means numOfWorker is 1 or '1:10' means auto-scale from 1 as min and 10 as max. Type: string (or Expression with resultType string). :type new_cluster_num_of_worker: object :param new_cluster_node_type: The node types of new cluster. Type: string (or Expression with resultType string). :type new_cluster_node_type: object :param new_cluster_spark_conf: a set of optional, user-specified Spark configuration key-value pairs. :type new_cluster_spark_conf: dict[str, object] :param encrypted_credential: The encrypted credential used for authentication. Credentials are encrypted using the integration runtime credential manager. Type: string (or Expression with resultType string). :type encrypted_credential: object """ _validation = { 'type': {'required': True}, 'domain': {'required': True}, 'access_token': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'connect_via': {'key': 'connectVia', 'type': 'IntegrationRuntimeReference'}, 'description': {'key': 'description', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': '{ParameterSpecification}'}, 'annotations': {'key': 'annotations', 'type': '[object]'}, 'type': {'key': 'type', 'type': 'str'}, 'domain': {'key': 'typeProperties.domain', 'type': 'object'}, 'access_token': {'key': 'typeProperties.accessToken', 'type': 'SecretBase'}, 'existing_cluster_id': {'key': 'typeProperties.existingClusterId', 'type': 'object'}, 'new_cluster_version': {'key': 'typeProperties.newClusterVersion', 'type': 'object'}, 'new_cluster_num_of_worker': {'key': 'typeProperties.newClusterNumOfWorker', 'type': 'object'}, 'new_cluster_node_type': {'key': 'typeProperties.newClusterNodeType', 'type': 'object'}, 'new_cluster_spark_conf': {'key': 'typeProperties.newClusterSparkConf', 'type': '{object}'}, 'encrypted_credential': {'key': 'typeProperties.encryptedCredential', 'type': 'object'}, } def __init__(self, domain, access_token, additional_properties=None, connect_via=None, description=None, parameters=None, annotations=None, existing_cluster_id=None, new_cluster_version=None, new_cluster_num_of_worker=None, new_cluster_node_type=None, new_cluster_spark_conf=None, encrypted_credential=None): super(AzureDatabricksLinkedService, self).__init__(additional_properties=additional_properties, connect_via=connect_via, description=description, parameters=parameters, annotations=annotations) self.domain = domain self.access_token = access_token self.existing_cluster_id = existing_cluster_id self.new_cluster_version = new_cluster_version self.new_cluster_num_of_worker = new_cluster_num_of_worker self.new_cluster_node_type = new_cluster_node_type self.new_cluster_spark_conf = new_cluster_spark_conf self.encrypted_credential = encrypted_credential self.type = 'AzureDatabricks'