This vignette shows examples for using tab_model() to create HTML tables for mixed models. Basically, tab_model() behaves in a very similar way for mixed models as for other, simple regression models, as shown in this vignette.
# load required packages
library(sjPlot)
library(sjmisc)
library(brms)
# load sample datasets
data("efc")
efc <- to_factor(efc, e42dep, c172code, c161sex, e15relat)
zinb <- read.csv("http://stats.idre.ucla.edu/stat/data/fish.csv")
# fit two sample models
m1 <- brm(
bf(count ~ child + camper + (1 | persons),
zi ~ child + camper),
data = zinb,
family = zero_inflated_poisson(),
cores = 4,
iter = 1000
)
f1 <- bf(neg_c_7 ~ e42dep + c12hour + c172code + (1 |ID| e15relat))
f2 <- bf(c12hour ~ c172code + (1 |ID| e15relat))
m2 <- brm(
f1 + f2 + set_rescor(FALSE),
data = efc,
cores = 4,
iter = 1000
)For Bayesian regression models, some of the differences to the table output from simple models or mixed models of tab_models() are the use of Highest Density Intervals instead of confidence intervals, the Bayes-R-squared values, and a different “point estimate” (which is, by default, the median from the posterior draws).
| count | ||||||
|---|---|---|---|---|---|---|
| Predictors | Incidence Rate Ratios | HDI (50%) | HDI (95%) | |||
| Intercept | 3.59 | 0.97 – 4.05 | 0.13 – 42.28 | |||
| child | 0.31 | 0.30 – 0.34 | 0.25 – 0.37 | |||
| camper | 2.13 | 2.03 – 2.31 | 1.75 – 2.51 | |||
| Zero-Inflated Model | ||||||
| Intercept | 0.51 | 0.36 – 0.57 | 0.22 – 0.93 | |||
| child | 3.93 | 2.97 – 4.25 | 2.06 – 6.44 | |||
| camper | 0.52 | 0.30 – 0.56 | 0.23 – 0.94 | |||
| Random Effects | ||||||
| σ2 | ||||||
| ICC icc | -13.34 | |||||
| ICC tau.00 | 457.29 | |||||
| ICC resid.var | -422.90 | |||||
| ICC total.var | 34.39 | |||||
| Observations | 250 | |||||
| Bayes R2 / Standard Error | 0.183 / 0.028 | |||||
For multivariate response models, like mediator-analysis-models, it is recommended to print just one model in the table, as each regression is displayed as own “model” in the output.
|
average number of hours of care per week |
Negative impact with 7 items |
|||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | HDI (50%) | HDI (95%) | Estimates | HDI (50%) | HDI (95%) |
| Intercept | 35.66 | 30.61 – 43.29 | 16.60 – 53.76 | 8.72 | 8.34 – 9.13 | 7.52 – 9.92 |
|
intermediate level of education |
-1.10 | -3.92 – 1.73 | -9.14 – 7.55 | 0.21 | -0.01 – 0.41 | -0.41 – 0.81 |
| high level of education | -7.43 | -10.37 – -3.54 | -17.55 – 3.08 | 0.71 | 0.44 – 0.99 | -0.04 – 1.53 |
| slightly dependent | 1.10 | 0.77 – 1.42 | 0.01 – 2.05 | |||
| moderately dependent | 2.32 | 2.00 – 2.67 | 1.36 – 3.28 | |||
| severely dependent | 3.87 | 3.50 – 4.21 | 2.73 – 4.86 | |||
|
average number of hours of care per week |
0.01 | 0.00 – 0.01 | -0.00 – 0.01 | |||
| Random Effects | ||||||
| σ2 | 12.80 | |||||
| τ00 e15relat | 0.52 | |||||
| ICC e15relat | 0.04 | |||||
| Observations | 834 | |||||
| Bayes R2 / Standard Error | 0.169 / 0.167 | |||||
To show just one HDI-column, use show.hdi50 = FALSE.
|
average number of hours of care per week |
Negative impact with 7 items |
|||
|---|---|---|---|---|
| Predictors | Estimates | HDI (95%) | Estimates | HDI (95%) |
| Intercept | 35.66 | 16.60 – 53.76 | 8.72 | 7.52 – 9.92 |
|
intermediate level of education |
-1.10 | -9.14 – 7.55 | 0.21 | -0.41 – 0.81 |
| high level of education | -7.43 | -17.55 – 3.08 | 0.71 | -0.04 – 1.53 |
| slightly dependent | 1.10 | 0.01 – 2.05 | ||
| moderately dependent | 2.32 | 1.36 – 3.28 | ||
| severely dependent | 3.87 | 2.73 – 4.86 | ||
|
average number of hours of care per week |
0.01 | -0.00 – 0.01 | ||
| Random Effects | ||||
| σ2 | 12.80 | |||
| τ00 e15relat | 0.52 | |||
| ICC e15relat | 0.04 | |||
| Observations | 834 | |||
| Bayes R2 / Standard Error | 0.169 / 0.167 | |||
When both multivariate and univariate response models are displayed in one table, a column Response is added for the multivariate response model, to indicate the different outcomes.
| count |
Negative impact with 7 items |
||||
|---|---|---|---|---|---|
| Predictors | Incidence Rate Ratios | HDI (95%) | Estimates | HDI (95%) | Response |
| Intercept | 3.59 | 0.13 – 42.28 | 8.72 | 7.52 – 9.92 | negc7 |
| Intercept | 3.59 | 0.13 – 42.28 | 35.66 | 16.60 – 53.76 | c12hour |
| child | 0.31 | 0.25 – 0.37 | |||
| camper | 2.13 | 1.75 – 2.51 | |||
| slightly dependent | 1.10 | 0.01 – 2.05 | negc7 | ||
| moderately dependent | 2.32 | 1.36 – 3.28 | negc7 | ||
| severely dependent | 3.87 | 2.73 – 4.86 | negc7 | ||
|
average number of hours of care per week |
0.01 | -0.00 – 0.01 | negc7 | ||
|
intermediate level of education |
0.21 | -0.41 – 0.81 | negc7 | ||
| high level of education | 0.71 | -0.04 – 1.53 | negc7 | ||
|
intermediate level of education |
-1.10 | -9.14 – 7.55 | c12hour | ||
| high level of education | -7.43 | -17.55 – 3.08 | c12hour | ||
| Zero-Inflated Model | |||||
| Intercept | 0.51 | 0.22 – 0.93 | |||
| child | 3.93 | 2.06 – 6.44 | |||
| camper | 0.52 | 0.23 – 0.94 | |||
| Random Effects | |||||
| σ2 | 12.80 | ||||
| τ00 | 0.52 e15relat | ||||
| ICC | -13.42 icc | 0.04 e15relat | |||
| 460.38 tau.00 | |||||
| -426.13 resid.var | |||||
| 34.25 total.var | |||||
| Observations | 250 | 834 | |||
| Bayes R2 / Standard Error | 0.183 / 0.028 | 0.169 / 0.167 | |||