sfepy.homogenization.recovery module¶
-
sfepy.homogenization.recovery.
combine_scalar_grad
(corrs, grad, vn, ii, shift_coors=None)[source]¶ \eta_k \partial_k^x p
or
(y_k + \eta_k) \partial_k^x p
-
sfepy.homogenization.recovery.
compute_mac_stress_part
(pb, integral, region, material, vu, mac_strain)[source]¶
-
sfepy.homogenization.recovery.
compute_micro_u
(corrs, strain, vu, dim, out=None)[source]¶ Micro displacements.
\bm{u}^1 = \bm{\chi}^{ij}\, e_{ij}^x(\bm{u}^0)
-
sfepy.homogenization.recovery.
compute_p_corr_steady
(corrs_pressure, pressure, vp, iel)[source]¶ \widetilde\pi^P\,p
-
sfepy.homogenization.recovery.
compute_p_corr_time
(corrs_rs, dstrains, corrs_pressure, pressures, vdp, dim, iel, ts)[source]¶ \sum_{ij} \int_0^t {\mathrm{d} \over \mathrm{d} t} \widetilde\pi^{ij}(t-s)\, {\mathrm{d} \over \mathrm{d} s} e_{ij}(\bm{u}(s))\,ds + \int_0^t {\mathrm{d} \over \mathrm{d} t}\widetilde\pi^P(t-s)\,p(s)\,ds
-
sfepy.homogenization.recovery.
compute_p_from_macro
(p_grad, coor, iel, centre=None, extdim=0)[source]¶ Macro-induced pressure.
\partial_j^x p\,(y_j - y_j^c)
-
sfepy.homogenization.recovery.
compute_stress_strain_u
(pb, integral, region, material, vu, data)[source]¶
-
sfepy.homogenization.recovery.
compute_u_corr_steady
(corrs_rs, strain, vu, dim, iel)[source]¶ \sum_{ij} \bm{\omega}^{ij}\, e_{ij}(\bm{u})
Notes
- iel = element number
-
sfepy.homogenization.recovery.
compute_u_corr_time
(corrs_rs, dstrains, corrs_pressure, pressures, vu, dim, iel, ts)[source]¶ \sum_{ij} \left[ \int_0^t \bm{\omega}^{ij}(t-s) {\mathrm{d} \over \mathrm{d} s} e_{ij}(\bm{u}(s))\,ds\right] + \int_0^t \widetilde{\bm{\omega}}^P(t-s)\,p(s)\,ds
-
sfepy.homogenization.recovery.
compute_u_from_macro
(strain, coor, iel, centre=None)[source]¶ Macro-induced displacements.
e_{ij}^x(\bm{u})\,(y_j - y_j^c)
-
sfepy.homogenization.recovery.
convolve_field_scalar
(fvars, pvars, iel, ts)[source]¶ \int_0^t f(t-s) p(s) ds
Notes
- t is given by step
- f: fvars scalar field variables, defined in a micro domain, have shape [step][fmf dims]
- p: pvars scalar point variables, a scalar in a point of macro-domain, FMField style have shape [n_step][var dims]
-
sfepy.homogenization.recovery.
convolve_field_sym_tensor
(fvars, pvars, var_name, dim, iel, ts)[source]¶ \int_0^t f^{ij}(t-s) p_{ij}(s) ds
Notes
- t is given by step
- f: fvars field variables, defined in a micro domain, have shape [step][fmf dims]
- p: pvars sym. tensor point variables, a scalar in a point of macro-domain, FMField style, have shape [dim, dim][var_name][n_step][var dims]
-
sfepy.homogenization.recovery.
get_output_suffix
(iel, ts, naming_scheme, format, output_format)[source]¶
-
sfepy.homogenization.recovery.
recover_bones
(problem, micro_problem, region, eps0, ts, strain, dstrains, p_grad, pressures, corrs_permeability, corrs_rs, corrs_time_rs, corrs_pressure, corrs_time_pressure, var_names, naming_scheme='step_iel')[source]¶ Notes
note that
\widetilde{\pi}^P
is in corrs_pressure -> from time correctors only ‘u’, ‘dp’ are needed.
-
sfepy.homogenization.recovery.
recover_micro_hook
(micro_filename, region, macro, naming_scheme='step_iel', recovery_file_tag='', define_args=None)[source]¶
-
sfepy.homogenization.recovery.
recover_micro_hook_eps
(micro_filename, region, eval_var, nodal_values, const_values, eps0, recovery_file_tag='', define_args=None)[source]¶