Term Overview¶
Term Syntax¶
In general, the syntax of a term call is:
<term name>.<i>.<r>( <arg1>, <arg2>, ... )
,
where <i>
denotes an integral name (i.e. a name of numerical quadrature
to use) and <r>
marks a region (domain of the integral).
The following notation is used:
symbol | meaning |
---|---|
\Omega | volume (sub)domain |
\Gamma | surface (sub)domain |
d | dimension of space |
t | time |
y | any function |
\ul{y} | any vector function |
\ul{n} | unit outward normal |
q, s | scalar test function |
p, r | scalar unknown or parameter function |
\bar{p} | scalar parameter function |
\ul{v} | vector test function |
\ul{w}, \ul{u} | vector unknown or parameter function |
\ul{b} | vector parameter function |
\ull{e}(\ul{u}) | Cauchy strain tensor (\frac{1}{2}((\nabla u) + (\nabla u)^T)) |
\ull{F} | deformation gradient F_{ij} = \pdiff{x_i}{X_j} |
J | \det(F) |
\ull{C} | right Cauchy-Green deformation tensor C = F^T F |
\ull{E}(\ul{u}) | Green strain tensor E_{ij} = \frac{1}{2}(\pdiff{u_i}{X_j} + \pdiff{u_j}{X_i} + \pdiff{u_m}{X_i}\pdiff{u_m}{X_j}) |
\ull{S} | second Piola-Kirchhoff stress tensor |
\ul{f} | vector volume forces |
f | scalar volume force (source) |
\rho | density |
\nu | kinematic viscosity |
c | any constant |
\delta_{ij}, \ull{I} | Kronecker delta, identity matrix |
\tr{\ull{\bullet}} | trace of a second order tensor (\sum_{i=1}^d \bullet_{ii}) |
\dev{\ull{\bullet}} | deviator of a second order tensor (\ull{\bullet} - \frac{1}{d}\tr{\ull{\bullet}}) |
T_K \in \Tcal_h | K-th element of triangulation (= mesh) \Tcal_h of domain \Omega |
K \from \Ical_h | K is assigned values from \{0, 1, \dots, N_h-1\} \equiv \Ical_h in ascending order |
The suffix “_0” denotes a quantity related to a previous time step.
Term names are (usually) prefixed according to the following conventions:
prefix | meaning | evaluation modes | meaning |
---|---|---|---|
dw | discrete weak | ‘weak’ | terms having a virtual (test) argument and zero or more unknown arguments, used for FE assembling |
d | discrete | ‘eval’, ‘el_eval’ | terms having all arguments known, the result is the value of the term integral evaluation |
ev | evaluate | ‘eval’, ‘el_eval’, ‘el_avg’, ‘qp’ | terms having all arguments known and supporting all evaluation modes except ‘weak’ (no virtual variables in arguments, no FE assembling) |
Term Table¶
Below we list all the terms available in automatically generated tables. The first column lists the name, the second column the argument lists and the third column the mathematical definition of each term. The terms are devided into the following tables:
- Table of basic terms
- Table of large deformation terms (total/updated Lagrangian formulation)
- Table of sensitivity terms
- Table of special terms
The notation <virtual>
corresponds to a test function,
<state>
to a unknown function and <parameter>
to a known function. By
<material>
we denote material (constitutive) parameters, or, in general, any
given function of space and time that parameterizes a term, for example
a given traction force vector.
Table of basic terms¶
name/class | arguments | definition |
---|---|---|
dw_advect_div_free |
<material>, <virtual>, <state> |
\int_{\Omega} \nabla \cdot (\ul{y} p) q = \int_{\Omega} (\underbrace{(\nabla \cdot \ul{y})}_{\equiv 0} + \ul{y} \cdot \nabla) p) q |
dw_bc_newton |
<material_1>, <material_2>, <virtual>, <state> |
\int_{\Gamma} \alpha q (p - p_{\rm outer}) |
ev_biot_stress |
<material>, <parameter> |
- \int_{\Omega} \alpha_{ij} \bar{p} \mbox{vector for } K \from \Ical_h: - \int_{T_K} \alpha_{ij} \bar{p} / \int_{T_K} 1 - \alpha_{ij} \bar{p}|_{qp} |
dw_biot |
|
\int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) \mbox{ , } \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) |
ev_cauchy_strain_s |
<parameter> |
\int_{\Gamma} \ull{e}(\ul{w}) \mbox{vector for } K \from \Ical_h: \int_{T_K} \ull{e}(\ul{w}) / \int_{T_K} 1 \ull{e}(\ul{w})|_{qp} |
ev_cauchy_strain |
<parameter> |
\int_{\Omega} \ull{e}(\ul{w}) \mbox{vector for } K \from \Ical_h: \int_{T_K} \ull{e}(\ul{w}) / \int_{T_K} 1 \ull{e}(\ul{w})|_{qp} |
ev_cauchy_stress |
<material>, <parameter> |
\int_{\Omega} D_{ijkl} e_{kl}(\ul{w}) \mbox{vector for } K \from \Ical_h: \int_{T_K} D_{ijkl} e_{kl}(\ul{w}) / \int_{T_K} 1 D_{ijkl} e_{kl}(\ul{w})|_{qp} |
dw_contact_plane |
<material_f>, <material_n>, <material_a>, <material_b>, <virtual>, <state> |
\int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n} |
dw_contact_sphere |
<material_f>, <material_c>, <material_r>, <virtual>, <state> |
\int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u}) |
dw_contact |
<material>, <virtual>, <state> |
\int_{\Gamma_{c}} \varepsilon_N \langle g_N(\ul{u}) \rangle \ul{n} \ul{v} |
dw_convect_v_grad_s |
<virtual>, <state_v>, <state_s> |
\int_{\Omega} q (\ul{u} \cdot \nabla p) |
dw_convect |
<virtual>, <state> |
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{u}) \cdot \ul{v} |
ev_def_grad |
<parameter> |
\ull{F} = \pdiff{\ul{x}}{\ul{X}}|_{qp} = \ull{I} + \pdiff{\ul{u}}{\ul{X}}|_{qp} \;, \\ \ul{x} = \ul{X} + \ul{u} \;, J = \det{(\ull{F})} |
dw_diffusion_coupling |
|
\int_{\Omega} p K_{j} \nabla_j q \mbox{ , } \int_{\Omega} q K_{j} \nabla_j p |
dw_diffusion_r |
<material>, <virtual> |
\int_{\Omega} K_{j} \nabla_j q |
ev_diffusion_velocity |
<material>, <parameter> |
- \int_{\Omega} K_{ij} \nabla_j \bar{p} \mbox{vector for } K \from \Ical_h: - \int_{T_K} K_{ij} \nabla_j \bar{p} / \int_{T_K} 1 - K_{ij} \nabla_j \bar{p} |
dw_diffusion |
|
\int_{\Omega} K_{ij} \nabla_i q \nabla_j p \mbox{ , } \int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r |
dw_div_grad |
|
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nu\ \nabla \ul{u} : \nabla \ul{w} \\ \int_{\Omega} \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nabla \ul{u} : \nabla \ul{w} |
dw_div |
<opt_material>, <virtual> |
\int_{\Omega} \nabla \cdot \ul{v} \mbox { or } \int_{\Omega} c \nabla \cdot \ul{v} |
ev_div |
<parameter> |
\int_{\Omega} \nabla \cdot \ul{u} \mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla \cdot \ul{u} / \int_{T_K} 1 (\nabla \cdot \ul{u})|_{qp} |
dw_elastic_wave_cauchy |
|
\int_{\Omega} D_{ijkl}\ g_{ij}(\ul{v}) e_{kl}(\ul{u}) \;, \int_{\Omega} D_{ijkl}\ g_{ij}(\ul{u}) e_{kl}(\ul{v}) |
dw_elastic_wave |
<material_1>, <material_2>, <virtual>, <state> |
\int_{\Omega} D_{ijkl}\ g_{ij}(\ul{v}) g_{kl}(\ul{u}) |
dw_electric_source |
<material>, <virtual>, <parameter> |
\int_{\Omega} c s (\nabla \phi)^2 |
ev_grad |
<parameter> |
\int_{\Omega} \nabla p \mbox{ or } \int_{\Omega} \nabla \ul{w} \mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla p / \int_{T_K} 1 \mbox{ or } \int_{T_K} \nabla \ul{w} / \int_{T_K} 1 (\nabla p)|_{qp} \mbox{ or } \nabla \ul{w}|_{qp} |
dw_jump |
<opt_material>, <virtual>, <state_1>, <state_2> |
\int_{\Gamma} c\, q (p_1 - p_2) |
dw_laplace |
|
\int_{\Omega} c \nabla q \cdot \nabla p \mbox{ , } \int_{\Omega} c \nabla \bar{p} \cdot \nabla r |
dw_lin_convect2 |
<material>, <virtual>, <state> |
\int_{\Omega} ((\ul{b} \cdot \nabla) \ul{u}) \cdot \ul{v} ((\ul{b} \cdot \nabla) \ul{u})|_{qp} |
dw_lin_convect |
<virtual>, <parameter>, <state> |
\int_{\Omega} ((\ul{b} \cdot \nabla) \ul{u}) \cdot \ul{v} ((\ul{b} \cdot \nabla) \ul{u})|_{qp} |
dw_lin_elastic_iso |
|
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) \mbox{ with } D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} |
dw_lin_elastic |
|
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) |
dw_lin_prestress |
|
\int_{\Omega} \sigma_{ij} e_{ij}(\ul{v}) |
dw_lin_strain_fib |
<material_1>, <material_2>, <virtual> |
\int_{\Omega} D_{ijkl} e_{ij}(\ul{v}) \left(d_k d_l\right) |
dw_non_penetration_p |
<material>, <virtual>, <state> |
\int_{\Gamma} c (\ul{n} \cdot \ul{v}) (\ul{n} \cdot \ul{u}) |
dw_non_penetration |
|
\int_{\Gamma} c \lambda \ul{n} \cdot \ul{v} \mbox{ , } \int_{\Gamma} c \hat\lambda \ul{n} \cdot \ul{u} \\ \int_{\Gamma} \lambda \ul{n} \cdot \ul{v} \mbox{ , } \int_{\Gamma} \hat\lambda \ul{n} \cdot \ul{u} |
dw_nonsym_elastic |
|
\int_{\Omega} \ull{D} \nabla\ul{u} : \nabla\ul{v} |
dw_piezo_coupling |
|
\int_{\Omega} g_{kij}\ e_{ij}(\ul{v}) \nabla_k p \mbox{ , } \int_{\Omega} g_{kij}\ e_{ij}(\ul{u}) \nabla_k q |
ev_piezo_strain |
<material>, <parameter> |
\int_{\Omega} g_{kij} e_{ij}(\ul{u}) |
ev_piezo_stress |
<material>, <parameter> |
\int_{\Omega} g_{kij} \nabla_k p |
dw_point_load |
<material>, <virtual> |
\ul{f}^i = \ul{\bar f}^i \quad \forall \mbox{ FE node } i \mbox{ in a region } |
dw_point_lspring |
<material>, <virtual>, <state> |
\ul{f}^i = -k \ul{u}^i \quad \forall \mbox{ FE node } i \mbox{ in a region } |
dw_s_dot_grad_i_s |
<material>, <virtual>, <state> |
Z^i = \int_{\Omega} q \nabla_i p |
dw_s_dot_mgrad_s |
|
\int_{\Omega} q \ul{y} \cdot \nabla p \mbox{ , } \int_{\Omega} p \ul{y} \cdot \nabla q |
dw_shell10x |
<material_d>, <material_drill>, <virtual>, <state> |
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) |
dw_stokes_wave_div |
|
\int_{\Omega} (\ul{\kappa} \cdot \ul{v}) (\nabla \cdot \ul{u}) \;, \int_{\Omega} (\ul{\kappa} \cdot \ul{u}) (\nabla \cdot \ul{v}) |
dw_stokes_wave |
<material>, <virtual>, <state> |
\int_{\Omega} (\ul{\kappa} \cdot \ul{v}) (\ul{\kappa} \cdot \ul{u}) |
dw_stokes |
|
\int_{\Omega} p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} q\ \nabla \cdot \ul{u} \mbox{ or } \int_{\Omega} c\ p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} c\ q\ \nabla \cdot \ul{u} |
d_sum_vals |
<parameter> |
|
ev_surface_div |
<parameter> |
\int_{\Gamma} \nabla \cdot \ul{u} \mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla \cdot \ul{u} / \int_{T_K} 1 (\nabla \cdot \ul{u})|_{qp} |
dw_surface_dot |
|
\int_\Gamma q p \mbox{ , } \int_\Gamma \ul{v} \cdot \ul{u} \mbox{ , } \int_\Gamma \ul{v} \cdot \ul{n} p \mbox{ , } \int_\Gamma q \ul{n} \cdot \ul{u} \mbox{ , } \int_\Gamma p r \mbox{ , } \int_\Gamma \ul{u} \cdot \ul{w} \mbox{ , } \int_\Gamma \ul{w} \cdot \ul{n} p \\ \int_\Gamma c q p \mbox{ , } \int_\Gamma c \ul{v} \cdot \ul{u} \mbox{ , } \int_\Gamma c p r \mbox{ , } \int_\Gamma c \ul{u} \cdot \ul{w} \\ \int_\Gamma \ul{v} \cdot \ull{M} \cdot \ul{u} \mbox{ , } \int_\Gamma \ul{u} \cdot \ull{M} \cdot \ul{w} |
d_surface_flux |
<material>, <parameter> |
\int_{\Gamma} \ul{n} \cdot K_{ij} \nabla_j \bar{p} \mbox{vector for } K \from \Ical_h: \int_{T_K} \ul{n} \cdot K_{ij} \nabla_j \bar{p}\ / \int_{T_K} 1 \mbox{vector for } K \from \Ical_h: \int_{T_K} \ul{n} \cdot K_{ij} \nabla_j \bar{p} |
dw_surface_flux |
<opt_material>, <virtual>, <state> |
\int_{\Gamma} q \ul{n} \cdot \ull{K} \cdot \nabla p |
ev_surface_grad |
<parameter> |
\int_{\Gamma} \nabla p \mbox{ or } \int_{\Gamma} \nabla \ul{w} \mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla p / \int_{T_K} 1 \mbox{ or } \int_{T_K} \nabla \ul{w} / \int_{T_K} 1 (\nabla p)|_{qp} \mbox{ or } \nabla \ul{w}|_{qp} |
ev_surface_integrate_mat |
<material>, <parameter> |
\int_\Gamma m \mbox{vector for } K \from \Ical_h: \int_{T_K} m / \int_{T_K} 1 m|_{qp} |
dw_surface_integrate |
<opt_material>, <virtual> |
\int_{\Gamma} q \mbox{ or } \int_\Gamma c q |
ev_surface_integrate |
<opt_material>, <parameter> |
\int_\Gamma y \mbox{ , } \int_\Gamma \ul{y} \mbox{ , } \int_\Gamma \ul{y} \cdot \ul{n} \\ \int_\Gamma c y \mbox{ , } \int_\Gamma c \ul{y} \mbox{ , } \int_\Gamma c \ul{y} \cdot \ul{n} \mbox{ flux } \mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (\ul{y} \cdot \ul{n}) / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (c \ul{y} \cdot \ul{n}) / \int_{T_K} 1 y|_{qp} \mbox{ , } \ul{y}|_{qp} \mbox{ , } (\ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp} \mbox{ , } (c \ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } |
dw_surface_ltr |
|
\int_{\Gamma} \ul{v} \cdot \ull{\sigma} \cdot \ul{n}, \int_{\Gamma} \ul{v} \cdot \ul{n}, |
d_surface_moment |
<material>, <parameter> |
\int_{\Gamma} \ul{n} (\ul{x} - \ul{x}_0) |
dw_surface_ndot |
|
\int_{\Gamma} q \ul{c} \cdot \ul{n} |
d_surface |
<parameter> |
\int_\Gamma 1 |
dw_v_dot_grad_s |
|
\int_{\Omega} \ul{v} \cdot \nabla p \mbox{ , } \int_{\Omega} \ul{u} \cdot \nabla q \\ \int_{\Omega} c \ul{v} \cdot \nabla p \mbox{ , } \int_{\Omega} c \ul{u} \cdot \nabla q \\ \int_{\Omega} \ul{v} \cdot (\ull{M} \nabla p) \mbox{ , } \int_{\Omega} \ul{u} \cdot (\ull{M} \nabla q) |
dw_vm_dot_s |
|
\int_{\Omega} \ul{v} \cdot \ul{m} p \mbox{ , } \int_{\Omega} \ul{u} \cdot \ul{m} q\\ |
dw_volume_dot |
|
\int_\Omega q p \mbox{ , } \int_\Omega \ul{v} \cdot \ul{u} \mbox{ , } \int_\Omega p r \mbox{ , } \int_\Omega \ul{u} \cdot \ul{w} \\ \int_\Omega c q p \mbox{ , } \int_\Omega c \ul{v} \cdot \ul{u} \mbox{ , } \int_\Omega c p r \mbox{ , } \int_\Omega c \ul{u} \cdot \ul{w} \\ \int_\Omega \ul{v} \cdot (\ull{M} \ul{u}) \mbox{ , } \int_\Omega \ul{u} \cdot (\ull{M} \ul{w}) |
ev_volume_integrate_mat |
<material>, <parameter> |
\int_\Omega m \mbox{vector for } K \from \Ical_h: \int_{T_K} m / \int_{T_K} 1 m|_{qp} |
dw_volume_integrate |
<opt_material>, <virtual> |
\int_\Omega q \mbox{ or } \int_\Omega c q |
ev_volume_integrate |
<opt_material>, <parameter> |
\int_\Omega y \mbox{ , } \int_\Omega \ul{y} \\ \int_\Omega c y \mbox{ , } \int_\Omega c \ul{y} \mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1 y|_{qp} \mbox{ , } \ul{y}|_{qp} \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp} |
dw_volume_lvf |
<material>, <virtual> |
\int_{\Omega} \ul{f} \cdot \ul{v} \mbox{ or } \int_{\Omega} f q |
d_volume_surface |
<parameter> |
1 / D \int_\Gamma \ul{x} \cdot \ul{n} |
d_volume |
<parameter> |
\int_\Omega 1 |
dw_zero |
<virtual>, <state> |
0 |
Table of sensitivity terms¶
name/class | arguments | definition |
---|---|---|
dw_adj_convect1 |
<virtual>, <state>, <parameter> |
\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w} |
dw_adj_convect2 |
<virtual>, <state>, <parameter> |
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w} |
dw_adj_div_grad |
<material_1>, <material_2>, <virtual>, <parameter> |
w \delta_{u} \Psi(\ul{u}) \circ \ul{v} |
d_sd_convect |
<parameter_u>, <parameter_w>, <parameter_mesh_velocity> |
\int_{\Omega} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal) - u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ] |
d_sd_diffusion |
<material>, <parameter_q>, <parameter_p>, <parameter_mesh_velocity> |
\int_{\Omega} \left[ (\dvg \ul{\Vcal}) K_{ij} \nabla_i q\, \nabla_j p - K_{ij} (\nabla_j \ul{\Vcal} \nabla q) \nabla_i p - K_{ij} \nabla_j q (\nabla_i \ul{\Vcal} \nabla p)\right] |
d_sd_div_grad |
<material_1>, <material_2>, <parameter_u>, <parameter_w>, <parameter_mesh_velocity> |
w \nu \int_{\Omega} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k} (\nabla \cdot \ul{\Vcal}) - \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k} - \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ] |
d_sd_div |
<parameter_u>, <parameter_p>, <parameter_mesh_velocity> |
\int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) - \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ] |
d_sd_lin_elastic |
<material>, <parameter_w>, <parameter_u>, <parameter_mesh_velocity> |
\int_{\Omega} \hat{D}_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) \hat{D}_{ijkl} = D_{ijkl}(\nabla \cdot \ul{\Vcal}) - D_{ijkq}{\partial \Vcal_l \over \partial x_q} - D_{iqkl}{\partial \Vcal_j \over \partial x_q} |
d_sd_surface_integrate |
<parameter>, <parameter_mesh_velocity> |
\int_{\Gamma} p \nabla \cdot \ul{\Vcal} |
d_sd_volume_dot |
<parameter_1>, <parameter_2>, <parameter_mesh_velocity> |
\int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , } \int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) |
Table of large deformation terms¶
name/class | arguments | definition |
---|---|---|
dw_tl_bulk_active |
<material>, <virtual>, <state> |
\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_bulk_penalty |
<material>, <virtual>, <state> |
\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_bulk_pressure |
<virtual>, <state>, <state_p> |
\int_{\Omega} S_{ij}(p) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_diffusion |
<material_1>, <material_2>, <virtual>, <state>, <parameter> |
\int_{\Omega} \ull{K}(\ul{u}^{(n-1)}) : \pdiff{q}{\ul{X}} \pdiff{p}{\ul{X}} |
dw_tl_fib_a |
<material_1>, <material_2>, <material_3>, <material_4>, <material_5>, <virtual>, <state> |
\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_he_mooney_rivlin |
<material>, <virtual>, <state> |
\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_he_neohook |
<material>, <virtual>, <state> |
\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_membrane |
<material_a1>, <material_a2>, <material_h0>, <virtual>, <state> |
|
d_tl_surface_flux |
<material_1>, <material_2>, <parameter_1>, <parameter_2> |
\int_{\Gamma} \ul{\nu} \cdot \ull{K}(\ul{u}^{(n-1)}) \pdiff{p}{\ul{X}} |
dw_tl_surface_traction |
<opt_material>, <virtual>, <state> |
\int_{\Gamma} \ul{\nu} \cdot \ull{F}^{-1} \cdot \ull{\sigma} \cdot \ul{v} J |
d_tl_volume_surface |
<parameter> |
1 / D \int_{\Gamma} \ul{\nu} \cdot \ull{F}^{-1} \cdot \ul{x} J |
dw_tl_volume |
<virtual>, <state> |
\begin{array}{l} \int_{\Omega} q J(\ul{u}) \\ \mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) \\ \mbox{rel\_volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) / \int_{T_K} 1 \end{array} |
dw_ul_bulk_penalty |
<material>, <virtual>, <state> |
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J |
dw_ul_bulk_pressure |
<virtual>, <state>, <state_p> |
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J |
dw_ul_compressible |
<material>, <virtual>, <state>, <parameter_u> |
\int_{\Omega} 1\over \gamma p \, q |
dw_ul_he_mooney_rivlin |
<material>, <virtual>, <state> |
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J |
dw_ul_he_neohook |
<material>, <virtual>, <state> |
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J |
dw_ul_volume |
<virtual>, <state> |
\begin{array}{l} \int_{\Omega} q J(\ul{u}) \\ \mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) \\ \mbox{rel\_volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) / \int_{T_K} 1 \end{array} |
Table of special terms¶
name/class | arguments | definition |
---|---|---|
dw_biot_eth |
|
\begin{array}{l} \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau)\,p(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) \mbox{ ,} \\ \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau) e_{kl}(\ul{u}(\tau)) \difd{\tau} \right] q \end{array} |
dw_biot_th |
|
\begin{array}{l} \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau)\,p(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) \mbox{ ,} \\ \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau) e_{kl}(\ul{u}(\tau)) \difd{\tau} \right] q \end{array} |
ev_cauchy_stress_eth |
<ts>, <material_0>, <material_1>, <parameter> |
\int_{\Omega} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} \mbox{vector for } K \from \Ical_h: \int_{T_K} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} / \int_{T_K} 1 \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau}|_{qp} |
ev_cauchy_stress_th |
<ts>, <material>, <parameter> |
\int_{\Omega} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} \mbox{vector for } K \from \Ical_h: \int_{T_K} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} / \int_{T_K} 1 \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau}|_{qp} |
dw_lin_elastic_eth |
<ts>, <material_0>, <material_1>, <virtual>, <state> |
\int_{\Omega} \left [\int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{u}(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) |
dw_lin_elastic_th |
<ts>, <material>, <virtual>, <state> |
\int_{\Omega} \left [\int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{u}(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) |
dw_of_ns_surf_min_d_press_diff |
<material>, <virtual> |
w \delta_{p} \Psi(p) \circ q |
d_of_ns_surf_min_d_press |
<material_1>, <material_2>, <parameter> |
\delta \Psi(p) = \delta \left( \int_{\Gamma_{in}}p - \int_{\Gamma_{out}}bpress \right) |
d_sd_st_grad_div |
<material>, <parameter_u>, <parameter_w>, <parameter_mesh_velocity> |
\gamma \int_{\Omega} [ (\nabla \cdot \ul{u}) (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) - \pdiff{u_i}{x_k} \pdiff{\Vcal_k}{x_i} (\nabla \cdot \ul{w}) - (\nabla \cdot \ul{u}) \pdiff{w_i}{x_k} \pdiff{\Vcal_k}{x_i} ] |
d_sd_st_pspg_c |
<material>, <parameter_b>, <parameter_u>, <parameter_r>, <parameter_mesh_velocity> |
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ \pdiff{r}{x_i} (\ul{b} \cdot \nabla u_i) (\nabla \cdot \Vcal) - \pdiff{r}{x_k} \pdiff{\Vcal_k}{x_i} (\ul{b} \cdot \nabla u_i) - \pdiff{r}{x_k} (\ul{b} \cdot \nabla \Vcal_k) \pdiff{u_i}{x_k} ] |
d_sd_st_pspg_p |
<material>, <parameter_r>, <parameter_p>, <parameter_mesh_velocity> |
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ [ (\nabla r \cdot \nabla p) (\nabla \cdot \Vcal) - \pdiff{r}{x_k} (\nabla \Vcal_k \cdot \nabla p) - (\nabla r \cdot \nabla \Vcal_k) \pdiff{p}{x_k} ] |
d_sd_st_supg_c |
<material>, <parameter_b>, <parameter_u>, <parameter_w>, <parameter_mesh_velocity> |
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ (\ul{b} \cdot \nabla u_k) (\ul{b} \cdot \nabla w_k) (\nabla \cdot \Vcal) - (\ul{b} \cdot \nabla \Vcal_i) \pdiff{u_k}{x_i} (\ul{b} \cdot \nabla w_k) - (\ul{u} \cdot \nabla u_k) (\ul{b} \cdot \nabla \Vcal_i) \pdiff{w_k}{x_i} ] |
dw_st_adj1_supg_p |
<material>, <virtual>, <state>, <parameter> |
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot \nabla \ul{w}) |
dw_st_adj2_supg_p |
<material>, <virtual>, <parameter>, <state> |
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla \ul{u}) |
dw_st_adj_supg_c |
<material>, <virtual>, <parameter>, <state> |
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla) \ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla) \ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ] |
dw_st_grad_div |
<material>, <virtual>, <state> |
\gamma \int_{\Omega} (\nabla\cdot\ul{u}) \cdot (\nabla\cdot\ul{v}) |
dw_st_pspg_c |
<material>, <virtual>, <parameter>, <state> |
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ ((\ul{b} \cdot \nabla) \ul{u}) \cdot \nabla q |
dw_st_pspg_p |
|
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla p \cdot \nabla q |
dw_st_supg_c |
<material>, <virtual>, <parameter>, <state> |
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ ((\ul{b} \cdot \nabla) \ul{u})\cdot ((\ul{b} \cdot \nabla) \ul{v}) |
dw_st_supg_p |
<material>, <virtual>, <parameter>, <state> |
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p\cdot ((\ul{b} \cdot \nabla) \ul{v}) |
dw_volume_dot_w_scalar_eth |
<ts>, <material_0>, <material_1>, <virtual>, <state> |
\int_\Omega \left [\int_0^t \Gcal(t-\tau) p(\tau) \difd{\tau} \right] q |
dw_volume_dot_w_scalar_th |
<ts>, <material>, <virtual>, <state> |
\int_\Omega \left [\int_0^t \Gcal(t-\tau) p(\tau) \difd{\tau} \right] q |