sfepy.terms.terms_surface module¶
- class sfepy.terms.terms_surface.ContactPlaneTerm(*args, **kwargs)[source]¶
Small deformation elastic contact plane term with penetration penalty.
The plane is given by an anchor point \ul{A} and a normal \ul{n}. The contact occurs in points that orthogonally project onto the plane into a polygon given by orthogonal projections of boundary points \{\ul{B}_i\}, i = 1, \dots, N_B on the plane. In such points, a penetration distance d(\ul{u}) = (\ul{X} + \ul{u} - \ul{A}, \ul{n}) is computed, and a force f(d(\ul{u})) \ul{n} is applied. The force depends on the non-negative parameters k (stiffness) and f_0 (force at zero penetration):
If f_0 = 0:
f(d) = 0 \mbox{ for } d \leq 0 \;, \\ f(d) = k d \mbox{ for } d > 0 \;.
If f_0 > 0:
f(d) = 0 \mbox{ for } d \leq -\frac{2 r_0}{k} \;, \\ f(d) = \frac{k^2}{4 r_0} d^2 + k d + r_0 \mbox{ for } -\frac{2 r_0}{k} < d \leq 0 \;, \\ f(d) = k d + f_0 \mbox{ for } d > 0 \;.
In this case the dependence f(d) is smooth, and a (small) force is applied even for (small) negative penetrations: -\frac{2 r_0}{k} < d \leq 0.
- Definition:
\int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}
- Call signature:
dw_contact_plane
(material_f, material_n, material_a, material_b, virtual, state)
- Arguments:
material_f : [k, f_0]
material_n : \ul{n} (special)
material_a : \ul{A} (special)
material_b : \{\ul{B}_i\}, i = 1, \dots, N_B (special)
virtual : \ul{v}
state : \ul{u}
- arg_shapes = {'material_a': '.: D', 'material_b': '.: N, D', 'material_f': '1, 2', 'material_n': '.: D', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = ('material_f', 'material_n', 'material_a', 'material_b', 'virtual', 'state')¶
- geometries = ['3_4', '3_8']¶
- get_fargs(force_pars, normal, anchor, bounds, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- integration = 'surface'¶
- name = 'dw_contact_plane'¶
- class sfepy.terms.terms_surface.ContactSphereTerm(*args, **kwargs)[source]¶
Small deformation elastic contact sphere term with penetration penalty.
The sphere is given by a centre point \ul{C} and a radius R. The contact occurs in points that are closer to \ul{C} than R. In such points, a penetration distance d(\ul{u}) = R - ||\ul{X} + \ul{u} - \ul{C}|| is computed, and a force f(d(\ul{u})) \ul{n}(\ul{u}) is applied, where \ul{n}(\ul{u}) = (\ul{X} + \ul{u} - \ul{C}) / ||\ul{X} + \ul{u} - \ul{C}||. The force depends on the non-negative parameters k (stiffness) and f_0 (force at zero penetration):
If f_0 = 0:
f(d) = 0 \mbox{ for } d \leq 0 \;, \\ f(d) = k d \mbox{ for } d > 0 \;.
If f_0 > 0:
f(d) = 0 \mbox{ for } d \leq -\frac{2 r_0}{k} \;, \\ f(d) = \frac{k^2}{4 r_0} d^2 + k d + r_0 \mbox{ for } -\frac{2 r_0}{k} < d \leq 0 \;, \\ f(d) = k d + f_0 \mbox{ for } d > 0 \;.
In this case the dependence f(d) is smooth, and a (small) force is applied even for (small) negative penetrations: -\frac{2 r_0}{k} < d \leq 0.
- Definition:
\int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u})
- Call signature:
dw_contact_sphere
(material_f, material_c, material_r, virtual, state)
- Arguments:
material_f : [k, f_0]
material_c : \ul{C} (special)
material_r : R (special)
virtual : \ul{v}
state : \ul{u}
- arg_shapes = {'material_c': '.: D', 'material_f': '1, 2', 'material_r': '.: 1', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = ('material_f', 'material_c', 'material_r', 'virtual', 'state')¶
- geometries = ['3_4', '3_8']¶
- get_fargs(force_pars, centre, radius, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- integration = 'surface'¶
- name = 'dw_contact_sphere'¶
- class sfepy.terms.terms_surface.LinearTractionTerm(name, arg_str, integral, region, **kwargs)[source]¶
Linear traction forces, where, depending on dimension of ‘material’ argument, \ull{\sigma} \cdot \ul{n} is \bar{p} \ull{I} \cdot \ul{n} for a given scalar pressure, \ul{f} for a traction vector, and itself for a stress tensor.
The material parameter can have one of the following shapes: 1 or (1, 1), (D, 1), (S, 1) in all modes, or (D, D) in the eval mode only. The symmetric tensor storage (S, 1) is as follows: in 3D S = 6 and the indices ordered as [11, 22, 33, 12, 13, 23], in 2D S = 3 and the indices ordered as [11, 22, 12].
- Definition:
\int_{\Gamma} \ul{v} \cdot \ull{\sigma} \cdot \ul{n}, \int_{\Gamma} \ul{v} \cdot \ul{n},
- Call signature:
dw_surface_ltr
(opt_material, virtual)
(opt_material, parameter)
- Arguments:
material : \ull{\sigma}
virtual : \ul{v}
- arg_shapes = [{'opt_material': 'S, 1', 'parameter': 'D', 'virtual': ('D', None)}, {'opt_material': 'D, 1'}, {'opt_material': '1, 1'}, {'opt_material': 'D, D'}, {'opt_material': None}]¶
- arg_types = (('opt_material', 'virtual'), ('opt_material', 'parameter'))¶
- integration = 'surface'¶
- modes = ('weak', 'eval')¶
- name = 'dw_surface_ltr'¶
- class sfepy.terms.terms_surface.SDLinearTractionTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity of the linear traction term.
- Definition:
\int_{\Gamma} \ul{v} \cdot \ull{\sigma} \cdot \ul{n}, \int_{\Gamma} \ul{v} \cdot \ul{n},
- Call signature:
ev_sd_surface_ltr
(opt_material, parameter, parameter_mv)
- Arguments:
material : \ull{\sigma}
parameter : \ul{v}
- arg_shapes = [{'opt_material': 'S, 1', 'parameter': 'D', 'parameter_mv': 'D'}, {'opt_material': '1, 1'}, {'opt_material': 'D, 1'}, {'opt_material': 'D, D'}, {'opt_material': None}]¶
- arg_types = ('opt_material', 'parameter', 'parameter_mv')¶
- get_eval_shape(traction, par_u, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- integration = 'surface'¶
- name = 'ev_sd_surface_ltr'¶
- class sfepy.terms.terms_surface.SDSufaceIntegrateTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity of scalar traction.
- Definition:
\int_{\Gamma} p \nabla \cdot \ul{\Vcal}
- Call signature:
ev_sd_surface_integrate
(parameter, parameter_mesh_velocity)
- Arguments:
parameter : p
parameter_mesh_velocity : \ul{\Vcal}
- arg_shapes = {'parameter': 1, 'parameter_mesh_velocity': 'D'}¶
- arg_types = ('parameter', 'parameter_mesh_velocity')¶
- integration = 'surface'¶
- name = 'ev_sd_surface_integrate'¶
- class sfepy.terms.terms_surface.SufaceNormalDotTerm(name, arg_str, integral, region, **kwargs)[source]¶
“Scalar traction” term, (weak form).
- Definition:
\int_{\Gamma} q \ul{c} \cdot \ul{n}
- Call signature:
dw_surface_ndot
(material, virtual)
(material, parameter)
- Arguments:
material : \ul{c}
virtual : q
- arg_shapes = {'material': 'D, 1', 'parameter': 1, 'virtual': (1, None)}¶
- arg_types = (('material', 'virtual'), ('material', 'parameter'))¶
- integration = 'surface'¶
- modes = ('weak', 'eval')¶
- name = 'dw_surface_ndot'¶
- class sfepy.terms.terms_surface.SurfaceJumpTerm(name, arg_str, integral, region, **kwargs)[source]¶
Interface jump condition.
- Definition:
\int_{\Gamma} c\, q (p_1 - p_2)
- Call signature:
dw_jump
(opt_material, virtual, state_1, state_2)
- Arguments:
material : c
virtual : q
state_1 : p_1
state_2 : p_2
- arg_shapes = [{'opt_material': '1, 1', 'state_1': 1, 'state_2': 1, 'virtual': (1, None)}, {'opt_material': None}]¶
- arg_types = ('opt_material', 'virtual', 'state_1', 'state_2')¶
- get_fargs(coef, virtual, state1, state2, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- integration = 'surface'¶
- name = 'dw_jump'¶