Actual source code: test35.c
slepc-3.12.2 2020-01-13
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2019, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test interface to external package PRIMME.\n\n"
12: "This is based on ex12.c. The command line options are:\n"
13: " -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
14: " -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
16: #include <slepceps.h>
18: int main(int argc,char **argv)
19: {
20: Mat A,B; /* matrices */
21: EPS eps; /* eigenproblem solver context */
22: ST st; /* spectral transformation context */
23: KSP ksp;
24: PC pc;
25: PetscInt N,n=35,m,Istart,Iend,II,i,j,bs;
26: PetscBool flag;
29: SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
31: PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
32: PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag);
33: if (!flag) m=n;
34: N = n*m;
35: PetscPrintf(PETSC_COMM_WORLD,"\nGeneralized eigenproblem with BLOPEX, N=%D (%Dx%D grid)\n\n",N,n,m);
37: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
38: Compute the matrices that define the eigensystem, Ax=kBx
39: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
41: MatCreate(PETSC_COMM_WORLD,&A);
42: MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);
43: MatSetFromOptions(A);
44: MatSetUp(A);
46: MatCreate(PETSC_COMM_WORLD,&B);
47: MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,N,N);
48: MatSetFromOptions(B);
49: MatSetUp(B);
51: MatGetOwnershipRange(A,&Istart,&Iend);
52: for (II=Istart;II<Iend;II++) {
53: i = II/n; j = II-i*n;
54: if (i>0) { MatSetValue(A,II,II-n,-1.0,INSERT_VALUES); }
55: if (i<m-1) { MatSetValue(A,II,II+n,-1.0,INSERT_VALUES); }
56: if (j>0) { MatSetValue(A,II,II-1,-1.0,INSERT_VALUES); }
57: if (j<n-1) { MatSetValue(A,II,II+1,-1.0,INSERT_VALUES); }
58: MatSetValue(A,II,II,4.0,INSERT_VALUES);
59: MatSetValue(B,II,II,2.0,INSERT_VALUES);
60: }
61: if (Istart==0) {
62: MatSetValue(B,0,0,6.0,INSERT_VALUES);
63: MatSetValue(B,0,1,-1.0,INSERT_VALUES);
64: MatSetValue(B,1,0,-1.0,INSERT_VALUES);
65: MatSetValue(B,1,1,1.0,INSERT_VALUES);
66: }
68: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
69: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
70: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
71: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
73: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
74: Create the eigensolver and set various options
75: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
77: EPSCreate(PETSC_COMM_WORLD,&eps);
78: EPSSetOperators(eps,A,B);
79: EPSSetProblemType(eps,EPS_GHEP);
80: EPSSetType(eps,EPSBLOPEX);
82: /*
83: Set several options
84: */
85: EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL);
86: EPSGetST(eps,&st);
87: STSetType(st,STPRECOND);
88: STGetKSP(st,&ksp);
89: KSPGetPC(ksp,&pc);
90: KSPSetType(ksp,KSPPREONLY);
91: PCSetType(pc,PCICC);
93: EPSBLOPEXSetBlockSize(eps,4);
94: EPSSetFromOptions(eps);
96: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
97: Compute all eigenvalues in interval and display info
98: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
100: EPSSolve(eps);
101: EPSBLOPEXGetBlockSize(eps,&bs);
102: PetscPrintf(PETSC_COMM_WORLD," BLOPEX: using block size %D\n",bs);
104: EPSErrorView(eps,EPS_ERROR_ABSOLUTE,NULL);
106: EPSDestroy(&eps);
107: MatDestroy(&A);
108: MatDestroy(&B);
109: SlepcFinalize();
110: return ierr;
111: }
113: /*TEST
115: build:
116: requires: blopex
118: test:
119: suffix: 1
120: args: -eps_nev 8 -eps_view
121: requires: blopex
122: filter: grep -v tolerance | sed -e "s/hermitian/symmetric/"
124: TEST*/