Package slepc4py :: Module SLEPc :: Class PEP
[hide private]
[frames] | no frames]

type PEP


PEP
Nested Classes [hide private]
Basis
Conv
PEP convergence test
ConvergedReason
PEP convergence reasons
ErrorType
PEP error type to assess accuracy of computed solutions
Extract
Extraction strategy used to obtain eigenvectors of the PEP from the eigenvectors of the linearization
ProblemType
PEP problem type
Refine
PEP refinement strategy
RefineScheme
Scheme for solving linear systems during iterative refinement
Scale
PEP scaling strategy
Type
PEP type
Which
PEP desired part of spectrum
Instance Methods [hide private]
a new object with type S, a subtype of T
__new__(S, ...)
 
appendOptionsPrefix(self, prefix)
Appends to the prefix used for searching for all PEP options in the database.
 
cancelMonitor(self)
Clears all monitors for a PEP object.
 
computeError(self, int i, etype=None)
Computes the error (based on the residual norm) associated with the i-th computed eigenpair.
 
create(self, comm=None)
Creates the PEP object.
 
destroy(self)
Destroys the PEP object.
 
errorView(self, etype=None, Viewer viewer=None)
Displays the errors associated with the computed solution (as well as the eigenvalues).
 
getBV(self)
Obtain the basis vectors object associated to the eigensolver.
 
getBasis(self)
Gets the type of polynomial basis used to describe the polynomial eigenvalue problem.
 
getConverged(self)
Gets the number of converged eigenpairs.
 
getConvergedReason(self)
Gets the reason why the solve() iteration was stopped.
 
getConvergenceTest(self)
Return the method used to compute the error estimate used in the convergence test.
 
getDimensions(self)
Gets the number of eigenvalues to compute and the dimension of the subspace.
 
getEigenpair(self, int i, Vec Vr=None, Vec Vi=None)
Gets the i-th solution of the eigenproblem as computed by solve().
 
getErrorEstimate(self, int i)
Returns the error estimate associated to the i-th computed eigenpair.
 
getInterval(self)
Gets the computational interval for spectrum slicing.
 
getIterationNumber(self)
Gets the current iteration number.
 
getJDFix(self)
Gets threshold for changing the target in the correction equation.
 
getJDRestart(self)
Gets the restart parameter used in the Jacobi-Davidson method.
 
getLinearEPS(self)
Retrieve the eigensolver object (EPS) associated to the polynomial eigenvalue solver.
 
getLinearExplicitMatrix(self)
Returns the flag indicating if the matrices A and B for the linearization are built explicitly.
 
getLinearLinearization(self)
Returns the coefficients that define the linearization of a quadratic eigenproblem.
 
getOperators(self)
Gets the matrices associated with the eigenvalue problem.
 
getOptionsPrefix(self)
Gets the prefix used for searching for all PEP options in the database.
 
getProblemType(self)
Gets the problem type from the PEP object.
 
getRG(self)
Obtain the region object associated to the eigensolver.
 
getRefine(self)
Gets the refinement strategy used by the PEP object, and the associated parameters.
 
getST(self)
Obtain the spectral transformation (ST) object associated to the eigensolver object.
 
getSTOARDetectZeros(self)
Gets the flag that enforces zero detection in spectrum slicing.
 
getSTOARDimensions(self)
Gets the dimensions used for each subsolve step in case of doing spectrum slicing for a computational interval.
 
getSTOARLocking(self)
Gets the locking flag used in the STOAR method.
 
getScale(self, Vec Dl=None, Vec Dr=None)
Gets the strategy used for scaling the polynomial eigenproblem.
 
getTOARLocking(self)
Gets the locking flag used in the TOAR method.
 
getTOARRestart(self)
Gets the restart parameter used in the TOAR method.
 
getTarget(self)
Gets the value of the target.
 
getTolerances(self)
Gets the tolerance and maximum iteration count used by the default PEP convergence tests.
 
getTrackAll(self)
Returns the flag indicating whether all residual norms must be computed or not.
 
getType(self)
Gets the PEP type of this object.
 
getWhichEigenpairs(self)
Returns which portion of the spectrum is to be sought.
 
reset(self)
Resets the PEP object.
 
setBV(self, BV bv)
Associates a basis vectors object to the eigensolver.
 
setBasis(self, basis)
Specifies the type of polynomial basis used to describe the polynomial eigenvalue problem.
 
setConvergenceTest(self, conv)
Specifies how to compute the error estimate used in the convergence test.
 
setDimensions(self, nev=None, ncv=None, mpd=None)
Sets the number of eigenvalues to compute and the dimension of the subspace.
 
setFromOptions(self)
Sets PEP options from the options database.
 
setInitialSpace(self, space)
Sets the initial space from which the eigensolver starts to iterate.
 
setInterval(self, inta, intb)
Defines the computational interval for spectrum slicing.
 
setJDFix(self, fix)
Sets the threshold for changing the target in the correction equation.
 
setJDRestart(self, keep)
Sets the restart parameter for the Jacobi-Davidson method, in particular the proportion of basis vectors that must be kept after restart.
 
setLinearEPS(self, EPS eps)
Associate an eigensolver object (EPS) to the polynomial eigenvalue solver.
 
setLinearExplicitMatrix(self, flag)
Indicate if the matrices A and B for the linearization of the problem must be built explicitly.
 
setLinearLinearization(self, alpha=1.0, beta=0.0)
Set the coefficients that define the linearization of a quadratic eigenproblem.
 
setOperators(self, operators)
Sets the matrices associated with the eigenvalue problem.
 
setOptionsPrefix(self, prefix)
Sets the prefix used for searching for all PEP options in the database.
 
setProblemType(self, problem_type)
Specifies the type of the eigenvalue problem.
 
setRG(self, RG rg)
Associates a region object to the eigensolver.
 
setRefine(self, ref, npart=None, tol=None, its=None, scheme=None)
Sets the refinement strategy used by the PEP object, and the associated parameters.
 
setST(self, ST st)
Associates a spectral transformation object to the eigensolver.
 
setSTOARDetectZeros(self, detect)
Sets a flag to enforce detection of zeros during the factorizations throughout the spectrum slicing computation.
 
setSTOARDimensions(self, nev=None, ncv=None, mpd=None)
Sets the dimensions used for each subsolve step in case of doing spectrum slicing for a computational interval.
 
setSTOARLocking(self, lock)
Choose between locking and non-locking variants of the STOAR method.
 
setScale(self, scale, alpha=None, Vec Dl=None, Vec Dr=None, its=None, lbda=None)
Sets the scaling strategy to be used for scaling the polynomial problem before attempting to solve.
 
setTOARLocking(self, lock)
Choose between locking and non-locking variants of the TOAR method.
 
setTOARRestart(self, keep)
Sets the restart parameter for the TOAR method, in particular the proportion of basis vectors that must be kept after restart.
 
setTarget(self, target)
Sets the value of the target.
 
setTolerances(self, tol=None, max_it=None)
Sets the tolerance and maximum iteration count used by the default PEP convergence tests.
 
setTrackAll(self, trackall)
Specifies if the solver must compute the residual of all approximate eigenpairs or not.
 
setType(self, pep_type)
Selects the particular solver to be used in the PEP object.
 
setUp(self)
Sets up all the internal data structures necessary for the execution of the eigensolver.
 
setWhichEigenpairs(self, which)
Specifies which portion of the spectrum is to be sought.
 
solve(self)
Solves the eigensystem.
 
view(self, Viewer viewer=None)
Prints the PEP data structure.

Inherited from petsc4py.PETSc.Object: __copy__, __deepcopy__, __eq__, __ge__, __gt__, __le__, __lt__, __ne__, __nonzero__, compose, decRef, getAttr, getClassId, getClassName, getComm, getDict, getName, getRefCount, getTabLevel, incRef, incrementTabLevel, query, setAttr, setName, setTabLevel, stateIncrease, viewFromOptions

Properties [hide private]

Inherited from petsc4py.PETSc.Object: classid, comm, fortran, handle, klass, name, prefix, refcount, type

Method Details [hide private]

__new__(S, ...)

 
Returns: a new object with type S, a subtype of T
Overrides: petsc4py.PETSc.Object.__new__

appendOptionsPrefix(self, prefix)

 

Appends to the prefix used for searching for all PEP options in the database.

Parameters

prefix: string
The prefix string to prepend to all PEP option requests.

computeError(self, int i, etype=None)

 

Computes the error (based on the residual norm) associated with the i-th computed eigenpair.

Parameters

i: int
Index of the solution to be considered.
etype: PEP.ErrorType enumerate
The error type to compute.

Returns

error: real
The error bound, computed in various ways from the residual norm ||P(l)x||_2 where l is the eigenvalue and x is the eigenvector.

Notes

The index i should be a value between 0 and nconv-1 (see getConverged()).

create(self, comm=None)

 

Creates the PEP object.

Parameters

comm: Comm, optional.
MPI communicator. If not provided, it defaults to all processes.

destroy(self)

 
Destroys the PEP object.
Overrides: petsc4py.PETSc.Object.destroy

errorView(self, etype=None, Viewer viewer=None)

 

Displays the errors associated with the computed solution (as well as the eigenvalues).

Parameters

etype: PEP.ErrorType enumerate, optional
The error type to compute.
viewer: Viewer, optional.
Visualization context; if not provided, the standard output is used.

Notes

By default, this function checks the error of all eigenpairs and prints the eigenvalues if all of them are below the requested tolerance. If the viewer has format ASCII_INFO_DETAIL then a table with eigenvalues and corresponding errors is printed.

getBV(self)

 

Obtain the basis vectors object associated to the eigensolver.

Returns

bv: BV
The basis vectors context.

getBasis(self)

 

Gets the type of polynomial basis used to describe the polynomial eigenvalue problem.

Returns

basis: PEP.Basis enumerate
the basis that was previously set.

getConverged(self)

 

Gets the number of converged eigenpairs.

Returns

nconv: int
Number of converged eigenpairs.

getConvergedReason(self)

 

Gets the reason why the solve() iteration was stopped.

Returns

reason: PEP.ConvergedReason enumerate
Negative value indicates diverged, positive value converged.

getConvergenceTest(self)

 

Return the method used to compute the error estimate used in the convergence test.

Returns

conv: PEP.Conv
The method used to compute the error estimate used in the convergence test.

getDimensions(self)

 

Gets the number of eigenvalues to compute and the dimension of the subspace.

Returns

nev: int
Number of eigenvalues to compute.
ncv: int
Maximum dimension of the subspace to be used by the solver.
mpd: int
Maximum dimension allowed for the projected problem.

getEigenpair(self, int i, Vec Vr=None, Vec Vi=None)

 

Gets the i-th solution of the eigenproblem as computed by solve(). The solution consists of both the eigenvalue and the eigenvector.

Parameters

i: int
Index of the solution to be obtained.
Vr: Vec, optional
Placeholder for the returned eigenvector (real part).
Vi: Vec, optional
Placeholder for the returned eigenvector (imaginary part).

Returns

e: scalar (possibly complex)
The computed eigenvalue.

getErrorEstimate(self, int i)

 

Returns the error estimate associated to the i-th computed eigenpair.

Parameters

i: int
Index of the solution to be considered.

Returns

error: real
Error estimate.

getInterval(self)

 

Gets the computational interval for spectrum slicing.

Returns

inta: float
The left end of the interval.
intb: float
The right end of the interval.

Notes

If the interval was not set by the user, then zeros are returned.

getIterationNumber(self)

 

Gets the current iteration number. If the call to solve() is complete, then it returns the number of iterations carried out by the solution method.

Returns

its: int
Iteration number.

getJDFix(self)

 

Gets threshold for changing the target in the correction equation.

Returns

fix: float
The threshold for changing the target.

getJDRestart(self)

 

Gets the restart parameter used in the Jacobi-Davidson method.

Returns

keep: float
The number of vectors to be kept at restart.

getLinearEPS(self)

 

Retrieve the eigensolver object (EPS) associated to the polynomial eigenvalue solver.

Returns

eps: EPS
The linear eigensolver.

getLinearExplicitMatrix(self)

 

Returns the flag indicating if the matrices A and B for the linearization are built explicitly.

Returns

flag: boolean

getLinearLinearization(self)

 

Returns the coefficients that define the linearization of a quadratic eigenproblem.

Returns

alpha: float
first parameter of the linearization.
beta: float
second parameter of the linearization.

getOperators(self)

 

Gets the matrices associated with the eigenvalue problem.

Returns

operators: tuple of Mat
The matrices associated with the eigensystem.

getOptionsPrefix(self)

 

Gets the prefix used for searching for all PEP options in the database.

Returns

prefix: string
The prefix string set for this PEP object.
Overrides: petsc4py.PETSc.Object.getOptionsPrefix

getProblemType(self)

 

Gets the problem type from the PEP object.

Returns

problem_type: PEP.ProblemType enumerate
The problem type that was previously set.

getRG(self)

 

Obtain the region object associated to the eigensolver.

Returns

rg: RG
The region context.

getRefine(self)

 

Gets the refinement strategy used by the PEP object, and the associated parameters.

Returns

ref: PEP.Refine
The refinement type.
npart: int
The number of partitions of the communicator.
tol: real
The convergence tolerance.
its: int
The maximum number of refinement iterations.
scheme: PEP.RefineScheme
Scheme for solving linear systems

getST(self)

 

Obtain the spectral transformation (ST) object associated to the eigensolver object.

Returns

st: ST
The spectral transformation.

getSTOARDetectZeros(self)

 

Gets the flag that enforces zero detection in spectrum slicing.

Returns

detect: bool
The zero detection flag.

getSTOARDimensions(self)

 

Gets the dimensions used for each subsolve step in case of doing spectrum slicing for a computational interval.

Returns

nev: int
Number of eigenvalues to compute.
ncv: int
Maximum dimension of the subspace to be used by the solver.
mpd: int
Maximum dimension allowed for the projected problem.

getSTOARLocking(self)

 

Gets the locking flag used in the STOAR method.

Returns

lock: bool
The locking flag.

getScale(self, Vec Dl=None, Vec Dr=None)

 

Gets the strategy used for scaling the polynomial eigenproblem.

Parameters

Dl: Vec, optional
Placeholder for the returned left diagonal matrix.
Dr: Vec, optional
Placeholder for the returned right diagonal matrix.

Returns

scale: PEP.Scale enumerate
The scaling strategy.
alpha: real
The scaling factor.
its: integer
The number of iteration of diagonal scaling.
lbda: real
Approximation of the wanted eigenvalues (modulus).

getTOARLocking(self)

 

Gets the locking flag used in the TOAR method.

Returns

lock: bool
The locking flag.

getTOARRestart(self)

 

Gets the restart parameter used in the TOAR method.

Returns

keep: float
The number of vectors to be kept at restart.

getTarget(self)

 

Gets the value of the target.

Returns

target: float (real or complex)
The value of the target.

Notes

If the target was not set by the user, then zero is returned.

getTolerances(self)

 

Gets the tolerance and maximum iteration count used by the default PEP convergence tests.

Returns

tol: float
The convergence tolerance.
max_it: int
The maximum number of iterations

getTrackAll(self)

 

Returns the flag indicating whether all residual norms must be computed or not.

Returns

trackall: bool
Whether the solver compute all residuals or not.

getType(self)

 

Gets the PEP type of this object.

Returns

type: PEP.Type enumerate
The solver currently being used.
Overrides: petsc4py.PETSc.Object.getType

getWhichEigenpairs(self)

 

Returns which portion of the spectrum is to be sought.

Returns

which: PEP.Which enumerate
The portion of the spectrum to be sought by the solver.

setBV(self, BV bv)

 

Associates a basis vectors object to the eigensolver.

Parameters

bv: BV
The basis vectors context.

setBasis(self, basis)

 

Specifies the type of polynomial basis used to describe the polynomial eigenvalue problem.

Parameters

basis: PEP.Basis enumerate
the basis to be set.

setConvergenceTest(self, conv)

 

Specifies how to compute the error estimate used in the convergence test.

Parameters

conv: PEP.Conv
The method used to compute the error estimate used in the convergence test.

setDimensions(self, nev=None, ncv=None, mpd=None)

 

Sets the number of eigenvalues to compute and the dimension of the subspace.

Parameters

nev: int, optional
Number of eigenvalues to compute.
ncv: int, optional
Maximum dimension of the subspace to be used by the solver.
mpd: int, optional
Maximum dimension allowed for the projected problem.

setFromOptions(self)

 
Sets PEP options from the options database. This routine must be called before setUp() if the user is to be allowed to set the solver type.
Overrides: petsc4py.PETSc.Object.setFromOptions

setInitialSpace(self, space)

 

Sets the initial space from which the eigensolver starts to iterate.

Parameters

space: Vec or sequence of Vec
The initial space

setInterval(self, inta, intb)

 

Defines the computational interval for spectrum slicing.

Parameters

inta: float
The left end of the interval.
intb: float
The right end of the interval.

Notes

Spectrum slicing is a technique employed for computing all eigenvalues of symmetric quadratic eigenproblems in a given interval. This function provides the interval to be considered. It must be used in combination with PEP.Which.ALL, see setWhichEigenpairs().

setJDFix(self, fix)

 

Sets the threshold for changing the target in the correction equation.

Parameters

fix: float
Threshold for changing the target.

Notes

The target in the correction equation is fixed at the first iterations. When the norm of the residual vector is lower than the fix value, the target is set to the corresponding eigenvalue.

setJDRestart(self, keep)

 

Sets the restart parameter for the Jacobi-Davidson method, in particular the proportion of basis vectors that must be kept after restart.

Parameters

keep: float
The number of vectors to be kept at restart.

Notes

Allowed values are in the range [0.1,0.9]. The default is 0.5.

setLinearEPS(self, EPS eps)

 

Associate an eigensolver object (EPS) to the polynomial eigenvalue solver.

Parameters

eps: EPS
The linear eigensolver.

setLinearExplicitMatrix(self, flag)

 

Indicate if the matrices A and B for the linearization of the problem must be built explicitly.

Parameters

flag: boolean
boolean flag indicating if the matrices are built explicitly .

setLinearLinearization(self, alpha=1.0, beta=0.0)

 

Set the coefficients that define the linearization of a quadratic eigenproblem.

Parameters

alpha: float
first parameter of the linearization.
beta: float
second parameter of the linearization.

setOperators(self, operators)

 

Sets the matrices associated with the eigenvalue problem.

Parameters

operators: sequence of Mat
The matrices associated with the eigensystem.

setOptionsPrefix(self, prefix)

 

Sets the prefix used for searching for all PEP options in the database.

Parameters

prefix: string
The prefix string to prepend to all PEP option requests.
Overrides: petsc4py.PETSc.Object.setOptionsPrefix

setProblemType(self, problem_type)

 

Specifies the type of the eigenvalue problem.

Parameters

problem_type: PEP.ProblemType enumerate
The problem type to be set.

setRG(self, RG rg)

 

Associates a region object to the eigensolver.

Parameters

rg: RG
The region context.

setRefine(self, ref, npart=None, tol=None, its=None, scheme=None)

 

Sets the refinement strategy used by the PEP object, and the associated parameters.

Parameters

ref: PEP.Refine
The refinement type.
npart: int, optional
The number of partitions of the communicator.
tol: real, optional
The convergence tolerance.
its: int, optional
The maximum number of refinement iterations.
scheme: PEP.RefineScheme, optional
Scheme for linear system solves

setST(self, ST st)

 

Associates a spectral transformation object to the eigensolver.

Parameters

st: ST
The spectral transformation.

setSTOARDetectZeros(self, detect)

 

Sets a flag to enforce detection of zeros during the factorizations throughout the spectrum slicing computation.

Parameters

detect: bool
True if zeros must checked for.

Notes

A zero in the factorization indicates that a shift coincides with an eigenvalue.

This flag is turned off by default, and may be necessary in some cases. This feature currently requires an external package for factorizations with support for zero detection, e.g. MUMPS.

setSTOARDimensions(self, nev=None, ncv=None, mpd=None)

 

Sets the dimensions used for each subsolve step in case of doing spectrum slicing for a computational interval. The meaning of the parameters is the same as in setDimensions().

Parameters

nev: int, optional
Number of eigenvalues to compute.
ncv: int, optional
Maximum dimension of the subspace to be used by the solver.
mpd: int, optional
Maximum dimension allowed for the projected problem.

setSTOARLocking(self, lock)

 

Choose between locking and non-locking variants of the STOAR method.

Parameters

lock: bool
True if the locking variant must be selected.

Notes

The default is to lock converged eigenpairs when the method restarts. This behaviour can be changed so that all directions are kept in the working subspace even if already converged to working accuracy (the non-locking variant).

setScale(self, scale, alpha=None, Vec Dl=None, Vec Dr=None, its=None, lbda=None)

 

Sets the scaling strategy to be used for scaling the polynomial problem before attempting to solve.

Parameters

scale: PEP.Scale enumerate
The scaling strategy.
alpha: real, optional
The scaling factor.
Dl: Vec, optional
The left diagonal matrix.
Dr: Vec, optional
The right diagonal matrix.
its: integer, optional
The number of iteration of diagonal scaling.
lbda: real, optional
Approximation of the wanted eigenvalues (modulus).

setTOARLocking(self, lock)

 

Choose between locking and non-locking variants of the TOAR method.

Parameters

lock: bool
True if the locking variant must be selected.

Notes

The default is to lock converged eigenpairs when the method restarts. This behaviour can be changed so that all directions are kept in the working subspace even if already converged to working accuracy (the non-locking variant).

setTOARRestart(self, keep)

 

Sets the restart parameter for the TOAR method, in particular the proportion of basis vectors that must be kept after restart.

Parameters

keep: float
The number of vectors to be kept at restart.

Notes

Allowed values are in the range [0.1,0.9]. The default is 0.5.

setTarget(self, target)

 

Sets the value of the target.

Parameters

target: float (real or complex)
The value of the target.

Notes

The target is a scalar value used to determine the portion of the spectrum of interest. It is used in combination with setWhichEigenpairs().

setTolerances(self, tol=None, max_it=None)

 

Sets the tolerance and maximum iteration count used by the default PEP convergence tests.

Parameters

tol: float, optional
The convergence tolerance.
max_it: int, optional
The maximum number of iterations

setTrackAll(self, trackall)

 

Specifies if the solver must compute the residual of all approximate eigenpairs or not.

Parameters

trackall: bool
Whether compute all residuals or not.

setType(self, pep_type)

 

Selects the particular solver to be used in the PEP object.

Parameters

pep_type: PEP.Type enumerate
The solver to be used.

setWhichEigenpairs(self, which)

 

Specifies which portion of the spectrum is to be sought.

Parameters

which: PEP.Which enumerate
The portion of the spectrum to be sought by the solver.

view(self, Viewer viewer=None)

 

Prints the PEP data structure.

Parameters

viewer: Viewer, optional.
Visualization context; if not provided, the standard output is used.
Overrides: petsc4py.PETSc.Object.view