46 #define MIN_GREEN_TIME 5 49 #define DEBUGCOND true 55 const std::vector<NBNode*>& junctions,
SUMOTime offset,
58 myHaveSinglePhase(false) {
104 for (
int e1l = 0; e1l < e1->
getNumLanes(); e1l++) {
106 for (
int e2l = 0; e2l < e2->
getNumLanes(); e2l++) {
108 for (std::vector<NBEdge::Connection>::iterator e1c = approached1.begin(); e1c != approached1.end(); ++e1c) {
112 for (std::vector<NBEdge::Connection>::iterator e2c = approached2.begin(); e2c != approached2.end(); ++e2c) {
116 if (!
forbids(e1, (*e1c).toEdge, e2, (*e2c).toEdge,
true)) {
128 std::pair<NBEdge*, NBEdge*>
130 std::pair<NBEdge*, NBEdge*> bestPair(static_cast<NBEdge*>(0), static_cast<NBEdge*>(0));
131 double bestValue = -1;
132 for (EdgeVector::const_iterator i = edges.begin(); i != edges.end(); ++i) {
133 for (EdgeVector::const_iterator j = i + 1; j != edges.end(); ++j) {
135 if (value > bestValue) {
137 bestPair = std::pair<NBEdge*, NBEdge*>(*i, *j);
138 }
else if (value == bestValue) {
140 const double oa =
GeomHelper::getMinAngleDiff(bestPair.first->getAngleAtNode(bestPair.first->getToNode()), bestPair.second->getAngleAtNode(bestPair.second->getToNode()));
142 if (bestPair.first->getID() < (*i)->getID()) {
143 bestPair = std::pair<NBEdge*, NBEdge*>(*i, *j);
145 }
else if (oa < ca) {
146 bestPair = std::pair<NBEdge*, NBEdge*>(*i, *j);
155 std::pair<NBEdge*, NBEdge*>
157 if (incoming.size() == 1) {
159 std::pair<NBEdge*, NBEdge*> ret(*incoming.begin(),
static_cast<NBEdge*
>(0));
167 used.push_back(*incoming.begin());
170 for (EdgeVector::iterator i = incoming.begin() + 1; i != incoming.end() && prio ==
getToPrio(*i); ++i) {
174 if (used.size() < 2) {
178 #ifdef DEBUG_STREAM_ORDERING 184 incoming.erase(find(incoming.begin(), incoming.end(), ret.first));
185 incoming.erase(find(incoming.begin(), incoming.end(), ret.second));
206 std::vector<bool> isTurnaround;
207 std::vector<int> fromLanes;
210 for (
int i1 = 0; i1 < (int)incoming.size(); i1++) {
211 int noLanes = incoming[i1]->getNumLanes();
212 noLanesAll += noLanes;
213 for (
int i2 = 0; i2 < noLanes; i2++) {
214 NBEdge* fromEdge = incoming[i1];
216 noLinksAll += (int) approached.size();
217 for (
int i3 = 0; i3 < (int)approached.size(); i3++) {
218 if (!fromEdge->
mayBeTLSControlled(i2, approached[i3].toEdge, approached[i3].toLane)) {
222 assert(i3 < (
int)approached.size());
223 NBEdge* toEdge = approached[i3].toEdge;
224 fromEdges.push_back(fromEdge);
225 fromLanes.push_back((
int)i2);
226 toEdges.push_back(toEdge);
230 isTurnaround.push_back(
true);
236 std::vector<NBNode::Crossing*> crossings;
238 const std::vector<NBNode::Crossing*>& c = (*i)->getCrossings();
241 (*i)->setCrossingTLIndices(
getID(), noLinksAll);
243 copy(c.begin(), c.end(), std::back_inserter(crossings));
244 noLinksAll += (int)c.size();
252 std::vector<int> greenPhases;
253 std::vector<bool> hadGreenMajor(noLinksAll,
false);
254 while (toProc.size() > 0) {
255 std::pair<NBEdge*, NBEdge*> chosen;
256 if (incoming.size() == 2) {
259 double angle = fabs(
NBHelpers::relAngle(incoming[0]->getAngleAtNode(incoming[0]->getToNode()), incoming[1]->getAngleAtNode(incoming[1]->getToNode())));
262 chosen = std::pair<NBEdge*, NBEdge*>(toProc[0],
static_cast<NBEdge*
>(0));
263 toProc.erase(toProc.begin());
271 std::string state((
int) noLinksAll,
'r');
274 for (
int i1 = 0; i1 < (int) incoming.size(); ++i1) {
275 NBEdge* fromEdge = incoming[i1];
276 const bool inChosen = fromEdge == chosen.first || fromEdge == chosen.second;
278 for (
int i2 = 0; i2 < numLanes; i2++) {
280 for (
int i3 = 0; i3 < (int)approached.size(); ++i3) {
281 if (!fromEdge->
mayBeTLSControlled(i2, approached[i3].toEdge, approached[i3].toLane)) {
296 for (
int i1 = 0; i1 < pos; ++i1) {
297 if (state[i1] ==
'G') {
302 if (state[i2] ==
'G' && !isTurnaround[i2] &&
303 (
forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1],
true) ||
forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2],
true))) {
307 if (!isForbidden && !
hasCrossing(fromEdges[i1], toEdges[i1], crossings)) {
313 bool haveForbiddenLeftMover =
false;
314 std::vector<bool> rightTurnConflicts(pos,
false);
315 state =
correctConflicting(state, fromEdges, toEdges, isTurnaround, fromLanes, hadGreenMajor, haveForbiddenLeftMover, rightTurnConflicts);
316 for (
int i1 = 0; i1 < pos; ++i1) {
317 if (state[i1] ==
'G') {
318 hadGreenMajor[i1] =
true;
322 const std::string vehicleState = state;
323 greenPhases.push_back((
int)logic->
getPhases().size());
324 state =
addPedestrianPhases(logic, greenTime, minDur, maxDur, state, crossings, fromEdges, toEdges);
326 for (
int i1 = pos; i1 < pos + (int)crossings.size(); ++i1) {
329 const bool buildLeftGreenPhase = haveForbiddenLeftMover && !
myHaveSinglePhase && leftTurnTime > 0;
330 if (brakingTime > 0) {
332 for (
int i1 = 0; i1 < pos; ++i1) {
333 if (state[i1] !=
'G' && state[i1] !=
'g') {
336 if ((vehicleState[i1] >=
'a' && vehicleState[i1] <=
'z') && buildLeftGreenPhase && !rightTurnConflicts[i1]) {
342 logic->
addStep(brakingTime, state);
348 if (buildLeftGreenPhase) {
350 for (
int i1 = 0; i1 < pos; ++i1) {
351 if (state[i1] ==
'Y' || state[i1] ==
'y') {
355 if (state[i1] ==
'g') {
360 state =
correctConflicting(state, fromEdges, toEdges, isTurnaround, fromLanes, hadGreenMajor, haveForbiddenLeftMover, rightTurnConflicts);
363 logic->
addStep(leftTurnTime, state, minDur, maxDur);
366 if (brakingTime > 0) {
367 for (
int i1 = 0; i1 < pos; ++i1) {
368 if (state[i1] !=
'G' && state[i1] !=
'g') {
374 logic->
addStep(brakingTime, state);
381 if (crossings.size() > 0) {
385 if (logic->
getPhases().size() == 2 && brakingTime > 0
388 logic->
addStep(redTime, std::string(noLinksAll,
'r'));
397 for (std::vector<int>::const_iterator it = greenPhases.begin(); it != greenPhases.end(); ++it) {
399 greenPhaseTime += dur;
400 minGreenDuration =
MIN2(minGreenDuration, dur);
402 const int patchSeconds = (int)(
STEPS2TIME(cycleTime - totalDuration) / greenPhases.size());
403 const int patchSecondsRest = (int)(
STEPS2TIME(cycleTime - totalDuration)) - patchSeconds * (
int)greenPhases.size();
407 || greenPhases.size() == 0) {
413 for (std::vector<int>::const_iterator it = greenPhases.begin(); it != greenPhases.end(); ++it) {
416 if (greenPhases.size() > 0) {
426 if (totalDuration > 0) {
427 if (totalDuration > 3 * (greenTime + 2 * brakingTime + leftTurnTime)) {
442 for (
auto c : crossings) {
446 for (EdgeVector::const_iterator it_e = cross.
edges.begin(); it_e != cross.
edges.end(); ++it_e) {
447 const NBEdge* edge = *it_e;
448 if (edge == from || edge == to) {
461 std::string state,
const std::vector<NBNode::Crossing*>& crossings,
const EdgeVector& fromEdges,
const EdgeVector& toEdges) {
464 const std::string orig = state;
468 logic->
addStep(greenTime, state, minDur, maxDur);
470 const SUMOTime pedTime = greenTime - pedClearingTime;
471 if (pedTime >= minPedTime) {
473 const int pedStates = (int)crossings.size();
474 logic->
addStep(pedTime, state, minDur, maxDur);
475 state = state.substr(0, state.size() - pedStates) + std::string(pedStates,
'r');
476 logic->
addStep(pedClearingTime, state);
480 logic->
addStep(greenTime, state, minDur, maxDur);
489 std::string result = state;
490 const int pos = (int)(state.size() - crossings.size());
491 for (
int ic = 0; ic < (int)crossings.size(); ++ic) {
492 const int i1 = pos + ic;
497 if (fromEdges[i2] != 0 && toEdges[i2] != 0 && fromEdges[i2]->getToNode() == cross.
node) {
498 for (EdgeVector::const_iterator it = cross.
edges.begin(); it != cross.
edges.end(); ++it) {
501 if (state[i2] !=
'r' && state[i2] !=
's' && (edge == fromEdges[i2] ||
517 for (
int i1 = 0; i1 < pos; ++i1) {
518 if (result[i1] ==
'G') {
519 for (
int ic = 0; ic < (int)crossings.size(); ++ic) {
521 if (fromEdges[i1] != 0 && toEdges[i1] != 0 && fromEdges[i1]->getToNode() == crossing.
node) {
522 const int i2 = pos + ic;
575 (*i)->removeTrafficLight(&dummy);
586 for (EdgeVector::iterator it = result.begin(); it != result.end();) {
587 if ((*it)->getConnections().size() == 0 || (*it)->isInnerEdge()) {
588 it = result.erase(it);
602 for (
int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
603 if (state[i1] ==
'G') {
606 bool followsChosen =
false;
607 for (
int i2 = 0; i2 < (int)fromEdges.size() && !followsChosen; ++i2) {
608 if (state[i2] ==
'G' && fromEdges[i1] == toEdges[i2]) {
609 followsChosen =
true;
624 const std::vector<bool>& isTurnaround,
625 const std::vector<int>& fromLanes,
626 const std::vector<bool>& hadGreenMajor,
627 bool& haveForbiddenLeftMover,
628 std::vector<bool>& rightTurnConflicts) {
630 for (
int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
631 if (state[i1] ==
'G') {
632 for (
int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
633 if ((state[i2] ==
'G' || state[i2] ==
'g')) {
635 fromEdges[i1], toEdges[i1], fromLanes[i1], fromEdges[i2], toEdges[i2], fromLanes[i2])) {
636 rightTurnConflicts[i1] =
true;
638 if (
forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1],
true, controlledWithin) || rightTurnConflicts[i1]) {
641 if (!isTurnaround[i1] && !hadGreenMajor[i1]) {
642 haveForbiddenLeftMover =
true;
648 if (state[i1] ==
'r') {
650 fromEdges[i1]->getToNode()->getDirection(fromEdges[i1], toEdges[i1]) ==
LINKDIR_RIGHT) {
653 for (
int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
654 if (state[i2] ==
'G' && !isTurnaround[i2] &&
655 (
forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1],
true) ||
656 forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2],
true))) {
657 const LinkDirection foeDir = fromEdges[i2]->getToNode()->getDirection(fromEdges[i2], toEdges[i2]);
664 if (state[i1] ==
's') {
666 for (
int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
667 if (state[i2] ==
'G' && !isTurnaround[i2] &&
668 (
forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1],
true) ||
669 forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2],
true))) {
683 const std::vector<NBNode::Crossing*>& crossings,
const EdgeVector& fromEdges,
const EdgeVector& toEdges) {
684 const int vehLinks = noLinksAll - (int)crossings.size();
685 std::vector<bool> foundGreen(crossings.size(),
false);
686 const std::vector<NBTrafficLightLogic::PhaseDefinition>& phases = logic->
getPhases();
687 for (
int i = 0; i < (int)phases.size(); ++i) {
688 const std::string state = phases[i].state;
689 for (
int j = 0; j < (int)crossings.size(); ++j) {
692 foundGreen[j] =
true;
696 for (
int j = 0; j < (int)foundGreen.size(); ++j) {
697 if (!foundGreen[j]) {
700 if (phases.size() > 0) {
701 bool needYellowPhase =
false;
702 std::string state = phases.back().state;
703 for (
int i1 = 0; i1 < vehLinks; ++i1) {
704 if (state[i1] ==
'G' || state[i1] ==
'g') {
706 needYellowPhase =
true;
710 if (needYellowPhase && brakingTime > 0) {
711 logic->
addStep(brakingTime, state);
723 if (allRedTime > 0) {
725 std::string allRedState = state;
726 for (
int i1 = 0; i1 < (int)state.size(); ++i1) {
727 if (allRedState[i1] ==
'Y' || allRedState[i1] ==
'y') {
728 allRedState[i1] =
'r';
731 logic->
addStep(allRedTime, allRedState);
static double relAngle(double angle1, double angle2)
computes the relative angle between the two angles
bool mayBeTLSControlled(int fromLane, NBEdge *toEdge, int toLane) const
return true if certain connection must be controlled by TLS
static double getMinAngleDiff(double angle1, double angle2)
Returns the minimum distance (clockwise/counter-clockwise) between both angles.
The link is a partial left direction.
The link has green light, may pass.
virtual void setParticipantsInformation()
Builds the list of participating nodes/edges/links.
bool setControllingTLInformation(const NBConnection &c, const std::string &tlID)
Returns if the link could be set as to be controlled.
void setTLControllingInformation() const
Informs edges about being controlled by a tls.
TrafficLightType myType
The algorithm type for the traffic light.
int getInt(const std::string &name) const
Returns the int-value of the named option (only for Option_Integer)
void collectAllLinks()
helper method for use in NBOwnTLDef and NBLoadedSUMOTLDef
static const std::string DummyID
id for temporary definitions
static bool hasCrossing(const NBEdge *from, const NBEdge *to, const std::vector< NBNode::Crossing *> &crossings)
compute whether the given connection is crossed by pedestrians
RightOnRedConflicts myRightOnRedConflicts
A SUMO-compliant built logic for a traffic light.
int getJunctionPriority(const NBNode *const node) const
Returns the junction priority (normalised for the node currently build)
The link has green light, has to brake.
std::string correctConflicting(std::string state, const EdgeVector &fromEdges, const EdgeVector &toEdges, const std::vector< bool > &isTurnaround, const std::vector< int > &fromLanes, const std::vector< bool > &hadGreenMajor, bool &haveForbiddenLeftMover, std::vector< bool > &rightTurnConflicts)
change 'G' to 'g' for conflicting connections
The representation of a single edge during network building.
std::string allowFollowersOfChosen(std::string state, const EdgeVector &fromEdges, const EdgeVector &toEdges)
allow connections that follow on of the chosen edges
TrafficLightType getType() const
get the algorithm type (static etc..)
const std::vector< PhaseDefinition > & getPhases() const
Returns the phases.
std::string time2string(SUMOTime t)
The base class for traffic light logic definitions.
NBEdge * getTurnDestination(bool possibleDestination=false) const
static const SUMOTime UNSPECIFIED_DURATION
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
NBEdge * getFrom() const
returns the from-edge (start of the connection)
bool isForbidden(SVCPermissions permissions)
Returns whether an edge with the given permission is a forbidden edge.
bool getBool(const std::string &name) const
Returns the boolean-value of the named option (only for Option_Bool)
const std::string & getID() const
Returns the id.
static EdgeVector getConnectedOuterEdges(const EdgeVector &incoming)
get edges that have connections
SUMOTime myOffset
The offset in the program.
The link is a (hard) left direction.
#define WRITE_WARNING(msg)
std::pair< NBEdge *, NBEdge * > getBestPair(EdgeVector &incoming)
Returns the combination of two edges from the given which has most unblocked streams.
static OptionsCont & getOptions()
Retrieves the options.
static bool rightTurnConflict(const NBEdge *from, const NBEdge *to, int fromLane, const NBEdge *prohibitorFrom, const NBEdge *prohibitorTo, int prohibitorFromLane, bool lefthand=false)
return whether the given laneToLane connection is a right turn which must yield to a bicycle crossing...
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)...
The link is a straight direction.
std::vector< Connection > getConnectionsFromLane(int lane) const
Returns connections from a given lane.
static void addPedestrianScramble(NBTrafficLightLogic *logic, int noLinksAll, SUMOTime greenTime, SUMOTime yellowTime, const std::vector< NBNode::Crossing *> &crossings, const EdgeVector &fromEdges, const EdgeVector &toEdges)
add an additional pedestrian phase if there are crossings that did not get green yet ...
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
int getNumLanes() const
Returns the number of lanes.
void replaceRemoved(NBEdge *removed, int removedLane, NBEdge *by, int byLane)
Replaces a removed edge/lane.
double computeUnblockedWeightedStreamNumber(const NBEdge *const e1, const NBEdge *const e2)
Returns how many streams outgoing from the edges can pass the junction without being blocked...
std::pair< NBEdge *, NBEdge * > getBestCombination(const EdgeVector &edges)
Returns the combination of two edges from the given which has most unblocked streams.
bool myHaveSinglePhase
Whether left-mover should not have an additional phase.
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic, in MSLink and GNEInternalLane.
NBOwnTLDef(const std::string &id, const std::vector< NBNode *> &junctions, SUMOTime offset, TrafficLightType type)
Constructor.
The link is a (hard) right direction.
static const std::string DefaultProgramID
const std::string & getProgramID() const
Returns the ProgramID.
The link is a partial right direction.
void buildAllRedState(SUMOTime allRedTime, NBTrafficLightLogic *logic, const std::string &state)
SUMOTime getDuration() const
Returns the duration of the complete cycle.
LinkDirection getDirection(const NBEdge *const incoming, const NBEdge *const outgoing, bool leftHand=false) const
Returns the representation of the described stream's direction.
const EdgeVector & getIncomingEdges() const
Returns the list of incoming edges (must be build first)
static std::string patchStateForCrossings(const std::string &state, const std::vector< NBNode::Crossing *> &crossings, const EdgeVector &fromEdges, const EdgeVector &toEdges)
compute phase state in regard to pedestrian crossings
void closeBuilding(bool checkVarDurations=true)
closes the building process
bool myRightOnRedConflictsReady
NBTrafficLightLogic * myCompute(int brakingTimeSeconds)
Computes the traffic light logic finally in dependence to the type.
NBTrafficLightLogic * computeLogicAndConts(int brakingTimeSeconds, bool onlyConts=false)
helper function for myCompute
void collectLinks()
Collects the links participating in this traffic light.
static std::string addPedestrianPhases(NBTrafficLightLogic *logic, SUMOTime greenTime, SUMOTime minDur, SUMOTime maxDur, std::string state, const std::vector< NBNode::Crossing *> &crossings, const EdgeVector &fromEdges, const EdgeVector &toEdges)
add 1 or 2 phases depending on the presence of pedestrian crossings
bool forbids(const NBEdge *const possProhibitorFrom, const NBEdge *const possProhibitorTo, const NBEdge *const possProhibitedFrom, const NBEdge *const possProhibitedTo, bool regardNonSignalisedLowerPriority, bool sameNodeOnly=false) const
Returns the information whether "prohibited" flow must let "prohibitor" flow pass.
bool myNeedsContRelationReady
std::vector< NBEdge * > EdgeVector
container for (sorted) edges
const NBNode * node
The parent node of this crossing.
NeedsContRelation myNeedsContRelation
void setPhaseDuration(int phaseIndex, SUMOTime duration)
Modifies the duration for an existing phase (used by NETEDIT)
bool isTurningDirectionAt(const NBEdge *const edge) const
Returns whether the given edge is the opposite direction to this edge.
double getDirectionalWeight(LinkDirection dir)
Returns the weight of a stream given its direction.
EdgeVector edges
The edges being crossed.
Represents a single node (junction) during network building.
A definition of a pedestrian crossing.
bool mustBrakeForCrossing(const NBEdge *const from, const NBEdge *const to, const Crossing &crossing) const
Returns the information whether the described flow must brake for the given crossing.
data structure for caching needsCont information
std::vector< NBNode * > myControlledNodes
The container with participating nodes.
NBNode * getFromNode() const
Returns the origin node of the edge.
A traffic light logics which must be computed (only nodes/edges are given)
void addStep(SUMOTime duration, const std::string &state, int index=-1)
Adds a phase to the logic.
void initNeedsContRelation() const
Sorts edges by their priority within the node they end at.
NBConnectionVector myControlledLinks
The list of controlled links.
NBNode * getToNode() const
Returns the destination node of the edge.
int getToPrio(const NBEdge *const e)
Returns this edge's priority at the node it ends at.
void remapRemoved(NBEdge *removed, const EdgeVector &incoming, const EdgeVector &outgoing)
Replaces occurences of the removed edge in incoming/outgoing edges of all definitions.