Package weka.classifiers.evaluation
Class NominalPrediction
- java.lang.Object
-
- weka.classifiers.evaluation.NominalPrediction
-
- All Implemented Interfaces:
java.io.Serializable
,Prediction
,RevisionHandler
public class NominalPrediction extends java.lang.Object implements Prediction, java.io.Serializable, RevisionHandler
Encapsulates an evaluatable nominal prediction: the predicted probability distribution plus the actual class value.- Version:
- $Revision: 1.12 $
- Author:
- Len Trigg (len@reeltwo.com)
- See Also:
- Serialized Form
-
-
Field Summary
-
Fields inherited from interface weka.classifiers.evaluation.Prediction
MISSING_VALUE
-
-
Constructor Summary
Constructors Constructor Description NominalPrediction(double actual, double[] distribution)
Creates the NominalPrediction object with a default weight of 1.0.NominalPrediction(double actual, double[] distribution, double weight)
Creates the NominalPrediction object.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description double
actual()
Gets the actual class value.double[]
distribution()
Gets the predicted probabilitiesjava.lang.String
getRevision()
Returns the revision string.static double[]
makeDistribution(double predictedClass, int numClasses)
Convert a single prediction into a probability distribution with all zero probabilities except the predicted value which has probability 1.0.static double[]
makeUniformDistribution(int numClasses)
Creates a uniform probability distribution -- where each of the possible classes is assigned equal probability.double
margin()
Calculates the prediction margin.double
predicted()
Gets the predicted class value.java.lang.String
toString()
Gets a human readable representation of this prediction.double
weight()
Gets the weight assigned to this prediction.
-
-
-
Constructor Detail
-
NominalPrediction
public NominalPrediction(double actual, double[] distribution)
Creates the NominalPrediction object with a default weight of 1.0.- Parameters:
actual
- the actual value, or MISSING_VALUE.distribution
- the predicted probability distribution. Use NominalPrediction.makeDistribution() if you only know the predicted value.
-
NominalPrediction
public NominalPrediction(double actual, double[] distribution, double weight)
Creates the NominalPrediction object.- Parameters:
actual
- the actual value, or MISSING_VALUE.distribution
- the predicted probability distribution. Use NominalPrediction.makeDistribution() if you only know the predicted value.weight
- the weight assigned to the prediction.
-
-
Method Detail
-
distribution
public double[] distribution()
Gets the predicted probabilities- Returns:
- the predicted probabilities
-
actual
public double actual()
Gets the actual class value.- Specified by:
actual
in interfacePrediction
- Returns:
- the actual class value, or MISSING_VALUE if no prediction was made.
-
predicted
public double predicted()
Gets the predicted class value.- Specified by:
predicted
in interfacePrediction
- Returns:
- the predicted class value, or MISSING_VALUE if no prediction was made.
-
weight
public double weight()
Gets the weight assigned to this prediction. This is typically the weight of the test instance the prediction was made for.- Specified by:
weight
in interfacePrediction
- Returns:
- the weight assigned to this prediction.
-
margin
public double margin()
Calculates the prediction margin. This is defined as the difference between the probability predicted for the actual class and the highest predicted probability of the other classes.- Returns:
- the margin for this prediction, or MISSING_VALUE if either the actual or predicted value is missing.
-
makeDistribution
public static double[] makeDistribution(double predictedClass, int numClasses)
Convert a single prediction into a probability distribution with all zero probabilities except the predicted value which has probability 1.0. If no prediction was made, all probabilities are zero.- Parameters:
predictedClass
- the index of the predicted class, or MISSING_VALUE if no prediction was made.numClasses
- the number of possible classes for this nominal prediction.- Returns:
- the probability distribution.
-
makeUniformDistribution
public static double[] makeUniformDistribution(int numClasses)
Creates a uniform probability distribution -- where each of the possible classes is assigned equal probability.- Parameters:
numClasses
- the number of possible classes for this nominal prediction.- Returns:
- the probability distribution.
-
toString
public java.lang.String toString()
Gets a human readable representation of this prediction.- Overrides:
toString
in classjava.lang.Object
- Returns:
- a human readable representation of this prediction.
-
getRevision
public java.lang.String getRevision()
Returns the revision string.- Specified by:
getRevision
in interfaceRevisionHandler
- Returns:
- the revision
-
-