Wireshark provides a variety of options for exporting packet data. This section describes general ways to export data from the main Wireshark application. There are many other ways to export or extract data from capture files, including processing tshark output and customizing Wireshark and tshark using Lua scripts.
This is similar to the “Save” dialog box, but it lets you save specific packets. This can be useful for trimming irrelevant or unwanted packets from a capture file. See Packet Range for details on the range controls.
This lets you save the packet list, packet details, and packet bytes as plain text, CSV, JSON, and other formats.
The format can be selected from the “Export As” dropdown and further customized using the “Packet Range” and “Packet Format” controls. Some controls are unavailable for some formats, notably CSV and JSON. The following formats are supported:
Here are some examples of exported data:
Plain text.
No. Time Source Destination Protocol Length SSID Info 1 0.000000 200.121.1.131 172.16.0.122 TCP 1454 10554 → 80 [ACK] Seq=1 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDU] Frame 1: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits) Ethernet II, Src: 00:50:56:c0:00:01, Dst: 00:0c:29:42:12:13 Internet Protocol Version 4, Src: 200.121.1.131 (200.121.1.131), Dst: 172.16.0.122 (172.16.0.122) 0100 .... = Version: 4 .... 0101 = Header Length: 20 bytes (5) Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT) Total Length: 1440 Identification: 0x0141 (321) Flags: 0x0000 ...0 0000 0000 0000 = Fragment offset: 0 Time to live: 106 Protocol: TCP (6) Header checksum: 0xd390 [validation disabled] [Header checksum status: Unverified] Source: 200.121.1.131 (200.121.1.131) Destination: 172.16.0.122 (172.16.0.122) [Source GeoIP: PE, ASN 6147, Telefonica del Peru S.A.A.] Transmission Control Protocol, Src Port: 10554, Dst Port: 80, Seq: 1, Ack: 1, Len: 1400
Tip | |
---|---|
If you would like to be able to import any previously exported packets from a plain text file it is recommended that you do the following:
|
CSV.
"No.","Time","Source","Destination","Protocol","Length","SSID","Info","Win Size" "1","0.000000","200.121.1.131","172.16.0.122","TCP","1454","","10554 > 80 [ACK] Seq=1 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDU]","65535" "2","0.000011","172.16.0.122","200.121.1.131","TCP","54","","[TCP ACKed unseen segment] 80 > 10554 [ACK] Seq=1 Ack=11201 Win=53200 Len=0","53200" "3","0.025738","200.121.1.131","172.16.0.122","TCP","1454","","[TCP Spurious Retransmission] 10554 > 80 [ACK] Seq=1401 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDU]","65535" "4","0.025749","172.16.0.122","200.121.1.131","TCP","54","","[TCP Window Update] [TCP ACKed unseen segment] 80 > 10554 [ACK] Seq=1 Ack=11201 Win=63000 Len=0","63000" "5","0.076967","200.121.1.131","172.16.0.122","TCP","1454","","[TCP Previous segment not captured] [TCP Spurious Retransmission] 10554 > 80 [ACK] Seq=4201 Ack=1 Win=65535 Len=1400 [TCP segment of a reassembled PDU]","65535"
JSON.
{ "_index": "packets-2014-06-22", "_type": "doc", "_score": null, "_source": { "layers": { "frame": { "frame.encap_type": "1", "frame.time": "Jun 22, 2014 13:29:41.834477000 PDT", "frame.offset_shift": "0.000000000", "frame.time_epoch": "1403468981.834477000", "frame.time_delta": "0.450535000", "frame.time_delta_displayed": "0.450535000", "frame.time_relative": "0.450535000", "frame.number": "2", "frame.len": "86", "frame.cap_len": "86", "frame.marked": "0", "frame.ignored": "0", "frame.protocols": "eth:ethertype:ipv6:icmpv6", "frame.coloring_rule.name": "ICMP", "frame.coloring_rule.string": "icmp || icmpv6" }, "eth": { "eth.dst": "33:33:ff:9e:e3:8e", "eth.dst_tree": { "eth.dst_resolved": "33:33:ff:9e:e3:8e", "eth.dst.oui": "3355647", "eth.addr": "33:33:ff:9e:e3:8e", "eth.addr_resolved": "33:33:ff:9e:e3:8e", "eth.addr.oui": "3355647", "eth.dst.lg": "1", "eth.lg": "1", "eth.dst.ig": "1", "eth.ig": "1" }, "eth.src": "00:01:5c:62:8c:46", "eth.src_tree": { "eth.src_resolved": "00:01:5c:62:8c:46", "eth.src.oui": "348", "eth.src.oui_resolved": "Cadant Inc.", "eth.addr": "00:01:5c:62:8c:46", "eth.addr_resolved": "00:01:5c:62:8c:46", "eth.addr.oui": "348", "eth.addr.oui_resolved": "Cadant Inc.", "eth.src.lg": "0", "eth.lg": "0", "eth.src.ig": "0", "eth.ig": "0" }, "eth.type": "0x000086dd" }, "ipv6": { "ipv6.version": "6", "ip.version": "6", "ipv6.tclass": "0x00000000", "ipv6.tclass_tree": { "ipv6.tclass.dscp": "0", "ipv6.tclass.ecn": "0" }, "ipv6.flow": "0x00000000", "ipv6.plen": "32", "ipv6.nxt": "58", "ipv6.hlim": "255", "ipv6.src": "2001:558:4080:16::1", "ipv6.addr": "2001:558:4080:16::1", "ipv6.src_host": "2001:558:4080:16::1", "ipv6.host": "2001:558:4080:16::1", "ipv6.dst": "ff02::1:ff9e:e38e", "ipv6.addr": "ff02::1:ff9e:e38e", "ipv6.dst_host": "ff02::1:ff9e:e38e", "ipv6.host": "ff02::1:ff9e:e38e", "ipv6.geoip.src_summary": "US, ASN 7922, Comcast Cable Communications, LLC", "ipv6.geoip.src_summary_tree": { "ipv6.geoip.src_country": "United States", "ipv6.geoip.country": "United States", "ipv6.geoip.src_country_iso": "US", "ipv6.geoip.country_iso": "US", "ipv6.geoip.src_asnum": "7922", "ipv6.geoip.asnum": "7922", "ipv6.geoip.src_org": "Comcast Cable Communications, LLC", "ipv6.geoip.org": "Comcast Cable Communications, LLC", "ipv6.geoip.src_lat": "37.751", "ipv6.geoip.lat": "37.751", "ipv6.geoip.src_lon": "-97.822", "ipv6.geoip.lon": "-97.822" } }, "icmpv6": { "icmpv6.type": "135", "icmpv6.code": "0", "icmpv6.checksum": "0x00005b84", "icmpv6.checksum.status": "1", "icmpv6.reserved": "00:00:00:00", "icmpv6.nd.ns.target_address": "2001:558:4080:16:be36:e4ff:fe9e:e38e", "icmpv6.opt": { "icmpv6.opt.type": "1", "icmpv6.opt.length": "1", "icmpv6.opt.linkaddr": "00:01:5c:62:8c:46", "icmpv6.opt.src_linkaddr": "00:01:5c:62:8c:46" } } } } } ]
Export the bytes selected in the “Packet Bytes” pane into a raw binary file.
Not yet written. If you would like to fix this, see https://gitlab.com/wireshark/wireshark/-/wikis/Development/SubmittingPatches.
Not yet written. If you would like to fix this, see https://gitlab.com/wireshark/wireshark/-/wikis/Development/SubmittingPatches.
This feature scans through the selected protocol’s streams in the currently open capture file or running capture and allows the user to export reassembled objects to the disk. For example, if you select HTTP, you can export HTML documents, images, executables, and any other files transferred over HTTP to the disk. If you have a capture running, this list is automatically updated every few seconds with any new objects seen. The saved objects can then be opened or examined independently of Wireshark.
Columns:
Filename: The filename for this object. Each protocol generates the filename differently. For example, HTTP uses the final part of the URI and IMF uses the subject of the email.
Inputs: